3,241
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Novel ophthalmic formulation of myriocin: implications in retinitis pigmentosa

, , , , , ORCID Icon, ORCID Icon, , , & show all
Pages 237-243 | Received 23 Nov 2018, Accepted 21 Jan 2019, Published online: 11 Mar 2019

References

  • Altamirano-Vallejo JC, Navarro-Partida J, Gonzalez-De la Rosa A, et al. (2018). Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations for vitreoretinal drug delivery. J Ocular Pharmacol Ther 34:416–25.
  • Amadio M, Pascale A, Cupri S, et al. (2016). Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat. Pharmacol Res 111:713–20.
  • Ameeduzzafar, Imam SS, Abbas Bukhari SN, et al. (2018). Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol 108:650–59.
  • Araujo J, Garcia ML, Mallandrich M, et al. (2012). Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine 8:1034–41.
  • Araujo J, Nikolic S, Egea MA, et al. (2011). Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B Biointerfaces 88:150–7.
  • Baig MS, Ahad A, Aslam M, et al. (2016). Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol 85:258–70.
  • Battaglia L, Gallarate M. (2012). Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Exp Opin Drug Deliv 9:497–508.
  • Battaglia L, Serpe L, Foglietta F, et al. (2016). Application of lipid nanoparticles to ocular drug delivery. Exp Opin Drug Deliv 13:1743–57.
  • Bucolo C, Drago F, Salomone S. (2012). Ocular drug delivery: a clue from nanotechnology. Front Pharmacol 3:188.
  • Bucolo C, Melilli B, Piazza C, et al. (2011). Ocular pharmacokinetics profile of different indomethacin topical formulations. J Ocular Pharmacol Ther 27:571–6.
  • Campisi GM, Signorelli P, Rizzo J, et al. (2017). Determination of the serine palmitoyl transferase inhibitor myriocin by electrospray and Q-trap mass spectrometry. Biomed Chromatogr 31.
  • Chetoni P, Burgalassi S, Monti D, et al. (2016). Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 109:214–23.
  • Dalmau N, Jaumot J, Tauler R, Bedia C. (2015). Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells. Mol BioSyst 11:3397–406.
  • Durairaj C. (2017). Ocular pharmacokinetics. In: Handbook of experimental pharmacology. Pharmacologic Therapy of Ocular Disease pp. 31–55. Springer.
  • Garanto A, Mandal NA, Egido-Gabás M, et al. (2013). Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp Eye Res 110:96–106.
  • Giannavola C, Bucolo C, Maltese A, et al. (2003). Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm Res 20:584–90.
  • Guadagni V, Novelli E, Piano I, et al. (2015). Pharmacological approaches to retinitis pigmentosa: a laboratory perspective. Prog Retinal Eye Res 48:62–81.
  • Imam SS, Bukhari SNA, Ali A. (2018). Preparation and evaluation of novel chitosan: gelrite ocular system containing besifloxacin for topical treatment of bacterial conjunctivitis: scintigraphy, ocular irritation and retention assessment. Artif Cells Nanomed Biotechnol 46:959–67.
  • Leonardi A, Bucolo C, Drago F, et al. (2015). Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int J Pharm 478:180–86.
  • Leonardi A, Bucolo C, Romano GL, et al. (2014). Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int J Pharm 478:180–86.
  • Macha S, Mitra AK, Hughes M. (2003). Overview of ocular drug delivery. In: A. K. Mitra, ed. Ophthalmic drug delivery systems. pp. 1–12. New York, NY: Marcel Dekker, Inc.
  • Mahaling B, Srinivasarao DA, Raghu G, et al. (2018). A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. Nanoscale 10:16485–98.
  • Merrill AH, Sullards MC, Allegood JC, et al. (2005). Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–24.
  • Müller RH, Radtke M, Wissing SA. (2002). Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–8.
  • Papangkorn K, Higuchi JW, Brar B, Higuchi WI. (2018). Ocular drug distribution and safety of a noninvasive ocular drug delivery system of dexamethasone sodium phosphate in rabbit. J Ocular Pharmacol Ther 34:325–34.
  • Piano I, Novelli E, Gasco P, et al. (2013). Cone survival and preservation of visual acuity in an animal model of retinal degeneration. Eur J Neurosci 37:1853–62.
  • Puglia C, Blasi P, Ostacolo C, et al. (2018). Innovative nanoparticles enhance N-palmitoylethanolamide intraocular delivery. Front Pharmacol 9:285.
  • Puglia C, Offerta A, Carbone C, et al. (2015). Lipid nanocarriers (LNC) and their applications in ocular drug delivery. Curr Med Chem 22:1589–602.
  • Schopf LR, Popov AM, Enlow EM, et al. (2015). Topical ocular drug delivery to the back of the eye by mucus-penetrating particles. Trans Vision Sci Technol 4:11.
  • Silva AC, González-Mira E, García ML, et al. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces 86:158–65.
  • Strettoi E, Gargini C, Novelli E, et al. (2010). Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 107:18706–11.
  • Struble C, Howard S, Relph J. (2014). Comparison of ocular tissue weights (volumes) and tissue collection techniques in commonly used preclinical animal species. Acta Ophthalmol 92:0.
  • Tuson M, Marfany G, Gonzalez-Duarte R. (2004). Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 74:128–38.
  • Zécri FJ. (2016). From natural product to the first oral treatment for multiple sclerosis: the discovery of FTY720 (GilenyaTM)? Curr Opin Chem Biol 32:60–6.