2,519
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Novel ultra-small micelles based on ginsenoside Rb1: a potential nanoplatform for ocular drug delivery

, , , , , , , & show all
Pages 481-489 | Received 27 Jan 2019, Accepted 23 Mar 2019, Published online: 08 Apr 2019

References

  • Alvarado HL, Abrego G, Garduno-Ramirez ML, et al. (2015). Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine 11:521–30.
  • Betts BS, K, Parvathaneni BB, Yendluri, et al. (2012). Ginsenoside-Rb1 Induces ARPE-19 Proliferation and Reduces VEGF Release. ISRN Ophthalmol 2011:184295.
  • Bucolo C, Maltese A, Puglisi G, et al. (2002). Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS100 nanoparticle suspension. Ophthalmic Res 34:319–23.
  • Dai L, Liu KF, Si CL, et al. (2016). Ginsenoside nanoparticle: a new green drug delivery system. J Mater Chem B 4:529–38.
  • Dai XX, Shi XY, Yin QQ, et al. (2013). Multiscale study on the interaction mechanism between ginsenoside biosurfactant and saikosaponin a. J Colloid Interface Sci 396:165–72.
  • Di Tommaso C, Torriglia A, Furrer P, et al. (2011). Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416:515–24.
  • Di Trani N, Jain P, Chua CYX, et al. (2019). Nanofluidic microsystem for sustained intraocular delivery of therapeutics. Nanomedicine 16:1–9.
  • Guo C, Zhang Y, Yang Z, et al. (2015). Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Sci Rep 5:12968.
  • Jiao J. (2008). Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev 60:1663–73.
  • Lee JS, Song JH, Sohn NW, et al. (2013). Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother Res 27:1270–6.
  • Li JY, Tan GX, Cheng BC, et al. (2017). Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular. Eur J Pharm Biopharm 120:89–97.
  • Li X, Zhang Z, Li J, et al. (2012). Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale 4:4667–73.
  • Li YF, Jin MJ, Shao SA, et al. (2014). Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model. Bmc Cancer 14:329.
  • Liu ZC, Chen JY, Huang WD, et al. (2013). Ginsenoside Rb1 protects rat retinal ganglion cells against hypoxia and oxidative stress. Mol Med Rep 8:1397–403.
  • Luo Y, Pan K, Zhong Q. (2015). Casein/pectin nanocomplexes as potential oral delivery vehicles. Int J Pharm 486:59–68.
  • Matsuoka K, Miyajima R, Ishida Y. (2016). Aggregate formation of glycyrrhizic acid. Coll Surf a-Physicochem Engineer Aspects 500:112–7.
  • Miao XQ, Li Y, Wyman I, et al. (2015). Enhanced in vitro and in vivo uptake of a hydrophobic model drug coumarin-6 in the presence of cucurbit[7]uril. Med Chem Commun 6:1370–4.
  • Mudgal S, Keresztes I, Feigenson GW, et al. (2016). Controlling the taste receptor accessible structure of rebaudioside A via binding to bovine serum albumin. Food Chem 197:84–91.
  • Nagai N, Yoshioka C, Mano Y, et al. (2015). A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure. Exp Eye Res 132:115–23.
  • Shishtar E, Sievenpiper JL, Djedovic V, et al. (2014). The effect of ginseng (the genus panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. Plos One 9:e107391.
  • Song K, Xin M, Yu H, et al. (2018). Novel ultra-small micelles based on rebaudioside A: a potential nanoplatform for ocular drug delivery. Int J Pharm 552:265–76.
  • Sun Y, Lee CC, Hung WC, et al. (2008). The bound states of amphipathic drugs in lipid bilayers: Study of curcumin. Biophys J 95:2318–24.
  • Suresh PK, Sah AK. (2014). Nanocarriers for ocular delivery for possible benefits in the treatment of anterior uveitis: focus on current paradigms and future directions. Exper Opin Drug Deliv 11:1747–68.
  • Vaccaro L, Lanari D, Marrocchi A, Strappaveccia G. (2014). Flow approaches towards sustainability. Green Chem 16:3680–704.
  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. (2009). Chitosan and its role in ocular therapeutics. Mini Rev Med Chem 9:1639–47.
  • Wei T, Chen C, Liu J, et al. (2015). Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci USA 112:2978–83.
  • Wu XG, Xin M, Chen H, et al. (2010). Novel mucoadhesive polysaccharide isolated from Bletilla striata improves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis. J Pharm Pharmacol 62:1152–7.
  • Wu YZ, Yu YH, Szabo A, et al. (2014). Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. Plos One 9:e92618.
  • Xiong J, Guo JX, Huang LS, et al. (2008). Self-micelle formation and the incorporation of lipid in the formulation affect the intestinal absorption of Panax notoginseng. Int J Pharm 360:191–6.
  • Yu YL, Chen DQ, Li YN, et al. (2018). Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies. Drug Deliv 25:888–99.
  • Yue J, Liu S, Xie ZG, et al. (2013). Size-dependent biodistribution and antitumor efficacy of polymer micelle drug delivery systems. J Mater Chem B 1:4273–80.
  • Zhang J, Han XZ, Li X, et al. (2012). Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomed 7:4299–310.