1,829
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity

, , , &
Pages 1292-1299 | Received 08 Oct 2019, Accepted 11 Nov 2019, Published online: 04 Dec 2019

References

  • Bassetti M, Vena A, Croxatto A, et al. (2018). How to manage Pseudomonas aeruginosa infections. Dic 7:1.
  • Cockerill F, Patel J. (2015). M100-S25 performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. Clin Lab Stand Inst 35:44–9.
  • de Andrade JP, de Macedo Farias L, Ferreira JF, et al. (2016). Sub-inhibitory concentration of piperacillin-tazobactam may be related to virulence properties of filamentous Escherichia coli. Curr Microbiol 72:19–28.
  • El Zowalaty ME, Al Thani AA, Webster TJ, et al. (2015). Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 10:1683–706.
  • Farhangi M, Kobarfard F, Mahboubi A, et al. (2018). Preparation of an optimized ciprofloxacin-loaded chitosan nanomicelle with enhanced antibacterial activity. Drug Develop Ind Pharma 44:1273–84.
  • Fonseca A, Extremina C, Fonseca A, et al. (2004). Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 53:903–10.
  • Forozsh FM, Irajian G, Moslehi TZ, et al. (2012). Drug resistance pattern of Pseudomonas aeruginosa strains isolated from cystic fibrosis patients at Isfahan AL Zahra hospital, Iran (2009–2010). Iran J Microbiol 4:94.
  • Fujii A, Seki M, Higashiguchi M, et al. (2014). Community-acquired, hospital-acquired, and healthcare-associated pneumonia caused by Pseudomonas aeruginosa. Respir Med Case Rep 12:30–3.
  • Grant EM, Kuti JL, Nicolau DP, et al. (2002). Clinical efficacy and pharmacoeconomics of a continuous‐infusion piperacillin‐tazobactam program in a large community teaching hospital. Pharmacotherapy 22:471–83.
  • Hall RG, Yoo E, Faust A, et al. (2019). Impact of piperacillin/tazobactam on nephrotoxicity in patients with Gram-negative bacteraemia. Int J Antimicrob Agents 53:343–6.
  • Hamilos DL. (2019). Biofilm formations in pediatric respiratory tract infection part 2: mucosal biofilm formation by respiratory pathogens and current and future therapeutic strategies to inhibit biofilm formation or eradicate established biofilm. Curr Infect Dis Rep 21:8.
  • Huang F, Gao Y, Zhang Y, et al. (2017). Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces 9:16880–9.
  • Josenhans C, Suerbaum S. (2002). The role of motility as a virulence factor in bacteria. Int J Med Microbiol 291:605–14.
  • Khosravi AD, Mihani F. (2008). Detection of metallo-β-lactamase–producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagnostic Microbiol Infect Dis 60:125–8.
  • Khosravi AD, Taee S, Dezfuli AA, et al. (2019). Investigation of the prevalence of genes conferring resistance to carbapenems in Pseudomonas aeruginosa isolates from burn patients. Infect Drug Resist Volume 12:1153–9.
  • Liu Y, Busscher HJ, Zhao B, et al. (2016). Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano 10:4779–89.
  • Liu Y, Ren Y, Li Y, et al. (2018). Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomaterialia 79:331–43.
  • Liu Y, Shi L, Su L, et al. (2019). Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48:428–46.
  • Lodise TP, Jr Lomaestro B, Drusano GL. (2007). Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44:357–63.
  • Mohammadi G, Valizadeh H, Barzegar-Jalali M, et al. (2010). Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Coll Surf B, Biointerf 80:34–9.
  • Onat B, Butun V, Banerjee S, et al. (2016). Bacterial anti-adhesive and pH-induced antibacterial agent releasing ultra-thin films of zwitterionic copolymer micelles. Acta Biomaterialia 40:293–309.
  • Patel JB. Performance standards for antimicrobial susceptibility testing. Pittsburgh, PA: Clinical and Laboratory Standards Institute; 2017.
  • Pena C, Suarez C, Tubau F, et al. (2009). Carbapenem-resistant Pseudomonas aeruginosa: factors influencing multidrug-resistant acquisition in non-critically ill patients. Eur J Clin Microbiol Infect Dis 28:519–22.
  • Sligl WI, Dragan T, Smith SW. (2015). Nosocomial Gram-negative bacteremia in intensive care: epidemiology, antimicrobial susceptibilities, and outcomes. Int J Infect Dis 37:129–34.
  • Stepanovic S, Vukovic D, Hola V, et al. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–9.
  • Su Y, Zhao L, Meng F, et al. (2018). Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Mater Sci Engineer C Mater Biol Appl 93:921–30.
  • Suresh MK, Biswas R, Biswas L. (2019). An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol 309:1–12.
  • Takahashi C, Akachi Y, Ogawa N, et al. (2017). Morphological study of efficacy of clarithromycin-loaded nanocarriers for treatment of biofilm infection disease. Med Mol Morphol 50:9–16.
  • Taylor E, Webster TJ. (2011). Reducing infections through nanotechnology and nanoparticles. Int J Nanomed 6:1463.
  • Valizadeh H, Mohammadi G, Ehyaei R, et al. (2012). Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmazie 67:63–8.
  • Wilson J, Schurr M, LeBlanc C, et al. (2002). Mechanisms of bacterial pathogenicity. Postgrad Med J 78:216–24.
  • Wolter J, McCormack J. (1998). The effect of subinhibitory concentrations of antibiotics on adherence of Pseudomonas aeruginosa to cystic fibrosis (CF) and non-CF-affected tracheal epithelial cells. J Infect 37:217–23.