5,063
Views
59
CrossRef citations to date
0
Altmetric
Research Article

Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo

, , , , , , , & show all
Pages 180-190 | Received 19 Nov 2019, Accepted 24 Dec 2019, Published online: 10 Jan 2020

References

  • Alotaibi HF, Perni S, Prokopovich P. (2019). Nanoparticle-based model of anti-inflammatory drug releasing LbL coatings for uncemented prosthesis aseptic loosening prevention. Int J Nanomedicine 14:7309–22.
  • Ariga K, Yamauchi Y, Rydzek G, et al. (2014). Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43:36–68.
  • Borges J, Mano JF. (2014). Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 114:8883–942.
  • Chen D, Yu H, Sun K, et al. (2014). Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Drug Deliv 21:258–64.
  • Chen Z-Y, Liang K, Qiu R-X. (2010). Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis. J Exp Clin Cancer Res 29:152.
  • Deng ZJ, Morton SW, Ben-Akiva E, et al. (2013). Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7:9571–84.
  • Deshmukh PK, Ramani KP, Singh SS, et al. (2013). Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Control Release 166:294–306.
  • Dev A, Mohan JC, Sreeja V, et al. (2010). Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79:1073–9.
  • Dong H, Pang L, Cong H, et al. (2019). Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 26:416–32.
  • Fabbri R, Macciocca M, Vicenti R, et al. (2016). Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol 12:1699–711.
  • Farjadian F, Rezaeifard S, Naeimi M, et al. (2019). Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly(vinylcaprolactam). Int J Nanomedicine 45:6901–15.
  • Fernando LP, Lewis JS, Evans BC, et al. (2018). Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery. J Biomed Mater Res A 106:1022–33.
  • Galluzzi L, Buque A, Kepp O, et al. (2015). Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714.
  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. (2018). Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–92.
  • Ganesh S, Iyer AK, Gattacceca F, et al. (2013). In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J Control Release 172:699–706.
  • Hallaj-Nezhadi S, Hassan M. (2015). Nanoliposome-based antibacterial drug delivery. Drug Deliv 22:581–9.
  • Hu K, Zhou H, Liu Y, et al. (2015). Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 7:8607–18.
  • Huang X, Liao W, Xie Z, et al. (2018). A pH-responsive prodrug delivery system self-assembled from acid-labile doxorubicin-conjugated amphiphilic pH-sensitive block copolymers. Mater Sci Eng C Mater Biol Appl 90:27–37.
  • Huang X, Liao W, Zhang G, et al. (2017). pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int J Nanomedicine 12:2215–26.
  • Jungk C, Chatziaslanidou D, Ahmadi R, et al. (2016). Chemotherapy with BCNU in recurrent glioma: analysis of clinical outcome and side effects in chemotherapy-naïve patients. BMC Cancer 16:81.
  • Lee H, Kim JB, Park SY, et al. (2013). Combination effect of paclitaxel and hyaluronic acid on cancer stem-like side population cells. J Biomed Nanotechnol 9:299–302.
  • Li J, Ma YJ, Wang Y, et al. (2018). Dual redox/pH-responsive hybrid polymer-lipid composites: synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chem Eng J 341:450–61.
  • Li X, Hirsh DJ, Cabral-Lilly D, et al. (1998). Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta 1415:23–40.
  • Li Y, Lu A, Long M, et al. (2019). Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts. Acta Biomater 83:334–48.
  • Limeres MJ, Moretton MA, Bernabeu E, et al. (2019). Thinking small, doing big: current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. Mater Sci Eng C Mater Biol Appl 95:328–41.
  • Little SR, Lynn DM, Puram SV, Langer R. (2005). Formulation and characterization of poly(β-amino ester) microparticles for genetic vaccine delivery. J Control Release 107:449–62.
  • Llinàs MC, Martínez-Edo G, Cascante A, et al. (2018). Preparation of a mesoporous silica-based nano-vehicle for Dual DOX/CPT pH-triggered delivery. Drug Deliv 25:1137–46.
  • Markman M, Mekhail TM. (2002). Paclitaxel in cancer therapy. Expert Opin Pharmacother 3:755–66.
  • Misra S, Hascall VC, Markwald RR, Ghatak S. (2015). Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 6:201.
  • Morton SW, Poon Z, Hammond PT. (2013). The architecture and biological performance of drug-loaded LbL nanoparticles. Biomaterials 34:5328–35.
  • Mura S, Nicolas J, Couvreur P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003.
  • Niu S, Bremner DH, Wu J, et al. (2018). l-Peptide functionalized dual-responsive nanoparticles for controlled paclitaxel release and enhanced apoptosis in breast cancer cells. Drug Deliv 25:1275–88.
  • Olszyna M, Debrassi A, Üzüm C, Dähne L. (2019). Label-free bioanalysis based on low-Q whispering gallery modes: rapid preparation of microsensors by means of layer-by-layer technology. Adv Funct Mater 29:1805998.
  • Pham PV, Phan NL, Nguyen NT, et al. (2011). Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 9:209.
  • Poon Z, Chang D, Zhao X, Hammond PT. (2011). Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5:4284–92.
  • Qin S-Y, Zhang A-Q, Cheng S-X, et al. (2017). Drug self-delivery systems for cancer therapy. Biomaterials 112:234–47.
  • Ramasamy T, Haidar ZS, Tran TH, et al. (2014). Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater 10:5116–27.
  • Raza F, Zhu Y, Chen L, et al. (2019). Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 7:2023–36.
  • Riera R, Feiner-Gracia N, Fornaguera C, et al. (2019). Tracking the DNA complexation state of PBAE polyplexes in cells with super resolution microscopy. Nanoscale 11:17869–77.
  • Sakr OS, Jordan O, Borchard G. (2016). Sustained protein release from hydrogel microparticles using layer-by-layer (LbL) technology. Drug Deliv 23:2747–55.
  • Sanson C, Schatz C, Le Meins J-F, et al. (2010). A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J Control Release 147:428–35.
  • Shen Y, Tang H, Zhan Y, et al. (2009). Degradable poly(β-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine 5:192–201.
  • Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V. (2018). Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13:1221–38.
  • Urbiola K, Sanmartín C, Blanco-Fernández L, Ilarduya C. (2014). Efficient targeted gene delivery by a novel PAMAM/DNA dendriplex coated with hyaluronic acid. Nanomedicine 9:2787–801.
  • Venditto VJ, Simanek EE. (2010). Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm 7:307–49.
  • Wang L, Yu J, Ni J, et al. (2003). Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200:57–67.
  • Wang Y, Zhang H, Hao J, et al. (2016). Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv 23:1398–403.
  • Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. (2011). Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 8:2032–8.
  • Xie L, Tong W, Yu D, et al. (2012). Bovine serum albumin nanoparticles modified with multilayers and aptamers for pH-responsive and targeted anti-cancer drug delivery. J Mater Chem 22:6053–60.
  • Yan Y, Such GK, Johnston AP, et al. (2011). Toward therapeutic delivery with layer-by-layer engineered particles. ACS Nano 5:4252–7.
  • Yang J, Lv Q, Wei W, et al. (2018). Bioresponsive albumin-conjugated paclitaxel prodrugs for cancer therapy. Drug Deliv 25:807–14.
  • Yoshizawa T, Takizawa S, Shimada S, et al. (2016). Effects of adrenomedullin on doxorubicin-induced cardiac damage in mice. Biol Pharm Bull 39:737–46.
  • Yuan H, Miao J, Du Y-Z, et al. (2008). Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm 348:137–45.
  • Zhang CY, Chen Q, Wu WS, et al. (2016). Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids Surf B Biointerfaces 142:55–64.
  • Zhang CY, Xiong D, Sun Y, et al. (2014). Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery. Int J Nanomedicine 9:4923–33.
  • Zhang CY, Yang YQ, Huang TX, et al. (2012). Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials 33:6273–83.
  • Zhang D, Zhang J, Li Q, et al. (2018). pH- and enzyme-sensitive IR820–paclitaxel conjugate self-assembled nanovehicles for near-infrared fluorescence imaging-guided chemo-photothermal therapy. ACS Appl Mater Interfaces 10:30092–102.
  • Zylberberg C, Matosevic S. (2016). Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23:3319–29.