6,337
Views
45
CrossRef citations to date
0
Altmetric
Review Article

Research progress in the application of in situ hydrogel system in tumor treatment

, , & ORCID Icon
Pages 460-468 | Received 15 Jan 2020, Accepted 02 Mar 2020, Published online: 13 Mar 2020

References

  • Ailincai D, Tartau Mititelu L, Marin L. (2018). Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Deliv 25:1080–90.
  • Almeida H, Amaral MH, Lobao P, et al. (2014). In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today 19:400–12.
  • Ashwanikumar N, Kumar NA, Saneesh Babu PS, et al. (2016). Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil. IJN 11:5583–94.
  • Ata S, Rasool A, Islam A, et al. (2019). Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int J Biol Macromol.
  • Bai MY, Tang SL, Chuang MH, et al. (2018). Evaluation of chitosan derivative microparticles encapsulating superparamagnetic iron oxide and doxorubicin as a pH-sensitive delivery carrier in hepatic carcinoma treatment: an in vitro Comparison Study. Front Pharmacol 9:1025–38.
  • Bendas ER, Abdullah H, El-Komy MHM, et al. (2013). Hydroxychloroquine niosomes: a new trend in topical management of oral lichen planus. Int J Pharm 458:287–95.
  • Boazak EM, Greene VK, Auguste DT. (2019). The effect of heterobifunctional crosslinkers on HEMA hydrogel modulus and toughness. PLoS One 14:e0215895.
  • Bonifacio MA, Gentile P, Ferreira AM, et al. (2017). Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydr Polym 163:280–91.
  • Cao M, Wang Y, Hu X, et al. (2019). Reversible thermoresponsive peptide-PNIPAM hydrogels for controlled drug delivery. Biomacromolecules 20:3601–10.
  • Casolaro M, Casolaro I, Bottari S, et al. (2014). Long-term doxorubicin release from multiple stimuli-responsive hydrogels based on α-amino-acid residues. Eur J Pharm Biopharm 88:424–33.
  • Chen Q, Wang C, Zhang X, et al. (2019). In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol 14:89–97.
  • Chen X, Liu Z. (2016). A pH-responsive hydrogel based on a tumor-targeting mesoporous silica nanocomposite for sustained cancer labeling and therapy. Macromol Rapid Commun 37:1533–9.
  • Chin SY, Poh YC, Kohler AC, et al. (2018). An additive manufacturing technique for the facile and rapid fabrication of hydrogel-based micromachines with magnetically responsive components. J Vis Exp 18:56727.
  • Cho EJ, Sun B, Doh KO, et al. (2015). Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials 37:312–9.
  • Chu K, Chen L, Xu W, et al. (2013). Preparation of a paeonol-containing temperature-sensitive in situ gel and its preliminary efficacy on allergic rhinitis. IJMS 14:6499–515.
  • Cullen JK, Simmons JL, Parsons PG, et al. (2019). Topical treatments for skin cancer. Adv Drug Deliv Rev.
  • Demirdirek B, Uhrich KE. (2017). Novel salicylic acid-based chmically crosslinked pH-sensitive hydrogel as potential drug delivery systems. Int J Pharm 528:406–15.
  • Ding W, Li Y, Hou X, et al. (2016). Bleomycin A6-loaded anionic liposomes with in situ gel as a new antitumoral drug delivery system. Drug Deliv 23:88–94.
  • Ellah NHA, Abouelmagd SA, Abbas AM, et al. (2018). Dual-responsive lidocaine in situ gel reduces pain of intrauterine device insertion. Int J Pharm 538:279–86.
  • Fan DY, Tian Y, Liu ZJ. (2019). Injectable hydrogels for localized cancer therapy. Front Chem 7:675–85.
  • Fathi M, Barar J, Erfan-Niya H, et al. (2019). Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int J Biol Macromol 48:111–20.
  • Feng RM, Zong YN, Cao SM, et al. (2019). Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond) 39:22–33.
  • Fong YT, Chen CH, Chen JP. (2017). Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials 7:388–411.
  • Fu SZ, Wu JB. (2014). P204 A paclitaxel-cisplatin loaded thermosensitive hydrogel for in situ treatment of lung cancer. Eur J Cancer 50:e66.
  • Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G, et al. (2019). Lu-Bombesin-PLGA (paclitaxel): a targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater Sci Eng C Mater Biol Appl 105:e110043.
  • Huang P, Song H, Zhang Y, et al. (2016). Bridging the gap between macroscale drug delivery systems and nanomedicines: a nanoparticle-assembled thermosensitive hydrogel for peritumoral chemotherapy. ACS Appl Mater Interfaces 8:29323–33.
  • Janga KY, Tatke A, Balguri SP, et al. (2018). Ion-sensitive in situ hydrogels of natamycin bilosomes for enhanced and prolonged ocular pharmacotherapy: in vitro permeability, cytotoxicity and in vivo evaluation. Artif Cells Nanomed Biotechnol 46:1039–50.
  • Jiang Y, Wang Y, Li Q, et al. (2019). Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem 27:1–26.
  • Jung YS, Koo DH, Yang JY, et al. (2018). Peri-tumor administration of 5-fluorouracil sol-gel using a hollow microneedle for treatment of gastric cancer. Drug Deliv 25:872–9.
  • Kakinoki S, Taguchi T, Saito H, et al. (2007). Injectable in situ forming drug delivery system for cancer chemotherapy using a novel tissue adhesive: characterization and in vitro evaluation. Eur J Pharm Biopharm 66:383–90.
  • Kang H, Liu H, Zhang X, et al. (2011). Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27:399–408.
  • Kempe S, Mäder K. (2012). In situ forming implants - an attractive formulation principle for parenteral depot formulations. J Control Release 161:668–79.
  • Khaliq NU, Oh KS, Sandra FC, et al. (2017). Assembly of polymer micelles through the sol-gel transition for effective cancer therapy. J Control Release 255:258–69.
  • Ko S, Park JY, Oh YK. (2019). A microbial siderophore-inspired self-gelling hydrogel for noninvasive anticancer phototherapy. Cancer Res 79:6178–89.
  • Kondaveeti S, Semeano ATS, Cornejo DR, et al. (2018). Magnetic hydrogels for levodopa release and cell stimulation triggered by external magnetic field. Colloids Surf B Biointerfaces 167:415–24.
  • Kushwaha SK, Saxena P, Rai A. (2012). Stimuli sensitive hydrogels for ophthalmic drug delivery: a review. Int J Pharm Investig 2:54–60.
  • Laddha UD, Mahajan HS. (2017). An insight to ocular in situ gelling systems. Int J Adv in Pharm 06:31–40.
  • Lee C, Lim K, Kim SS, et al. (2019). Near infrared light-responsive heat-emitting hemoglobin hydrogels for photothermal cancer therapy. Colloids Surf B Biointerfaces 176:156–66.
  • Liang Y, Zhao X, Ma PX, et al. (2019). pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 536:224–34.
  • Lin Z, Gao W, Hu H, et al. (2014). Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release 174:161–70.
  • Liu J, Zhang L, Yang Z, et al. (2011). Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed 6:2143–53.
  • Liu Q, Li H, Lam KY. (2017). Development of a multiphysics model to characterize the responsive behavior of magnetic-sensitive hydrogels with finite deformation. J Phys Chem B 121:5633–46.
  • Liu Q, Li H, Lam KY. (2019). Modeling of a fast-response magnetic-sensitive hydrogel for dynamic control of microfluidic flow. Phys Chem Chem Phys 21:1852–62.
  • Lo YL, Hsu CY, Lin HR. (2012). pH-and thermo-sensitive pluronic/poly (acrylic acid) in situ hydrogels for sustained release of an anticancer drug. J Drug Target 21:54–66.
  • Lu C, Liu M, Fu H, et al. (2015). Novel thermosensitive in situ gel based on poloxamer for uterus delivery. Eur J Pharm Sci 77:24–8.
  • Mao Y, Li X, Chen G, et al. (2016). Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: better antitumor efficacy and lower toxicity. J Pharm Sci 105:194–204.
  • Meng C, Wei W, Wang Y, et al. (2019). Study on the interaction between self-assembling peptide and mangiferin and in vitro release of mangiferin from in-situ hydrogel. Int J Nanomedicine14:7447–60.
  • Moghassemi S, Hadjizadeh A. (2014). Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185:22–36.
  • Morsi N, Ghorab D, Refai H, et al. (2016). Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm 506:57–67.
  • Norouzi M, Nazari B, Miller DW. (2016). Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 21:1835–49.
  • Omidi S, Pirhayati M, Kakanejadifard A. (2020). Co-delivery of doxorubicin and curcumin by a pH-sensitive, injectable, and in situ hydrogel composed of chitosan, graphene, and cellulose nanowhisker. Carbohydr Polym 231:115745.
  • Pareek A, Maheshwari S, Cherlo S, et al. (2017). Modeling drug release through stimuli responsive polymer hydrogels. Int J Pharm 532:502–10.
  • Park K, Skidmore S, Hadar J, et al. (2019). Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release 304:125–34.
  • Paulsamy M, Ponnusamy C, Palanisami M, et al. (2018). Nepafenac loaded silica nanoparticles dispersed in-situ gel systems: development and characterization. Int J Biol Macromol 110:336–45.
  • Qu J, Zhao X, Ma PX, et al. (2017). pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater 58:168–80.
  • Rakhshaei R, Namazi H, Hamishehkar H, et al. (2019). Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int J Biol Macromol.
  • Rarokar NR, Saoji SD, Raut NA, et al. (2016). Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS Pharm Sci Tech 17:436–45.
  • Rastogi SK, Anderson HE, Lamas J, et al. (2018). Enhanced release of molecules upon UV light irradiation from photoresponsive hydrogels prepared from bifunctional azobenzene and four-arm poly (ethylene glycol). ACS Appl Mater Interfaces 10:30071–80.
  • Raymond KN, Allred BE, Sia AK. (2015). Coordination chemistry of microbial iron transport. Acc Chem Res 48:2496–505.
  • Ren Y, Li X, Han B, et al. (2019). Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel. Eur J Pharm Sci 128:279–89.
  • Rizwan M, Yahya R, Hassan A, et al. (2017). pH Sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9:137.
  • Rupenthal ID, Green CR, Alany RG. (2011). Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm 411:69–77.
  • Sahoo B, Devi KS, Banerjee R, et al. (2013). Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces 5:3884–93.
  • Shaker DS, Shaker MA, Hanafy MS. (2015). Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. Int J Pharm 493:285–94.
  • Shaker DS, Shaker MA, Klingner A, et al. (2016). In situ thermosensitive tamoxifen citrate loaded hydrogels: an effective tool in breast cancer loco-regional therapy. J Drug Deliv Sci Technol 35:155–64.
  • Shang J, Theato P. (2018). Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Soft Matter 14:8401–7.
  • Shen N, Hu J, Zhang L, et al. (2012). Doxorubicin-loaded zein in situ gel for interstitial chemotherapy of colorectal cancer. Acta Pharm Sin B 2:610–4.
  • Shi Y, Wang X, Deng X, et al. (2016). Release profile of insulin from pH-sensitive hydrogel and its hypoglycemic effect by oral administration. J Biomater Sci Polym Ed 27:86–96.
  • Siegel RL, Miller KD, Jemal A. (2019). Cancer statistics, 2019. CA A Cancer J Clin 69:7–34.
  • Singh A, Vaishagya K, Verma RK, et al. (2019). Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole delivery for application in cancer chemotherapy. AAPS Pharm Sci Tech 20:213–26.
  • Singh K, HariKumar SL. (2012). Injectable in-situ gelling controlled release drug delivery system. Int J Drug Dev & Res 4:56–69.
  • Solomevich SO, Bychkovsky PM, Yurkshtovich TL, et al. (2019). Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy. Carbohydr Polym 226:115308.
  • Wang C, Zhang G, Liu G, et al. (2017). Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J Control Release 259:149–59.
  • Wang Z, Deng X, Ding J, et al. (2018). Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: a review. Int J Pharm 535:253–60.
  • Watanabe T, Furuse J, Okano N, et al. (2017). A pathological complete response after combined chemotherapy of gemcitabine and S-1 in advanced biliary tract cancer with para-aortic lymph nodes metastasis: a case report. Surg Case Rep 3:26–31.
  • Wei W, Meng C, Wang Y, et al. (2019). The interaction between self - assembling peptides and emodin and the controlled release of emodin from in-situ hydrogel. Artif Cells Nanomed Biotechnol 47:3961–75.
  • Wu H, Song L, Chen L, et al. (2018). Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents the post-operative recurrence in a breast cancer model. Acta Biomater 74:302–11.
  • Wu RS, Lin J, Xing YM, et al. (2019). pH-sensitive black phosphorous incorporated hydrogel as novel implant for cancer treatment. J Pharm Sci 108:2542–51.
  • Wu Z, Zou X, Yang L, et al. (2014). Thermosensitive hydrogel used in dual drug delivery system with paclitaxel-loaded micelles for in situ treatment of lung cancer. Colloids Surf B Biointerfaces 122:90–8.
  • Xie AJ, Yin HS, Liu HM, et al. (2018). Chinese quince seed gum and poly (N,N-diethylacryl amide-co-methacrylic acid) based pH-sensitive hydrogel for use in drug delivery. Carbohydr Polym 185:96–104.
  • Xie MH, Ge M, Peng JB, et al. (2019). In-vivo anti-tumor activity of a novel poloxamer-based thermosensitive in situ gel for sustained delivery of norcantharidin. Pharm Dev Technol 24:1–22.
  • Xing J, Qi X, Jiang Y, et al. (2015). Topotecan hydrochloride liposomes incorporated into thermosensitive hydrogel for sustained and efficient in situ therapy of H22 tumor in Kunming mice. Pharm Dev Technol 20:812–9.
  • Yan H, Jin B. (2012). Influence of environmental solution pH and microstructural parameters on mechanical behavior of amphoteric pH-sensitive hydrogels. Eur Phys J E Soft Matter 35:36–46.
  • Yang Y, Wang X, Yang F, et al. (2018). Highly elastic and ultratough hybrid Ionic-covalent hydrogels with tunable structures and mechanics. Adv Mater 30:e1707071.
  • Yue Z, Che YJ, Jin Z, et al. (2019). A facile method to fabricate thermo- and pH-sensitive hydrogels with good mechanical performance based on poly (ethylene glycol) methyl ether methacrylate and acrylic acid as a potential drug carriers. J Biomater Sci Polym Ed 30:1375–98.
  • Zhang K, Shi X, Lin X, et al. (2015). Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv 22:375–82.
  • Zhang K, Zhou L, Chen F, et al. (2019). Injectable gel self-assembled by paclitaxel itself for in situ inhibition of tumor growth. J Control Release 315:197–205.
  • Zhang ZQ, Song SC. (2016). Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials 106:13–23.
  • Zhao D, Song H, Zhou X, et al. (2019). Novel facile thermosensitive hydrogel as sustained and controllable gene release vehicle for breast cancer treatment. Eur J Pharm Sci 134:145–52.
  • Zhu X, Zhang H, Huang H, et al. (2015). Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors. Nanotechnology 26:365103.