1,360
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Strategies to enhance oral delivery of amphotericin B: a comparison of uncoated and enteric-coated nanostructured lipid carriers

, & ORCID Icon
Pages 1054-1062 | Received 11 May 2020, Accepted 16 Jun 2020, Published online: 07 Jul 2020

References

  • Ali Khan A, Mudassir J, Mohtar N, et al. (2013). Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomed 8:2733–44.
  • Chang CM, Bodmeier R. (1997). Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci 86:747–52.
  • Clogston JD, Patri AK. (2011). Zeta potential measurement. In: McNeil SE, ed. Characterization of nanoparticles intended for drug delivery. Totowa (NJ): Humana Press.
  • Das S, Ng WK, Kanaujia P, et al. (2011). Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B 88:483–9.
  • de Ménorval MA, Mir LM, Fernández ML, et al. (2012). Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: a comparative study of experiments in silico and with cells. PLoS One 7:e41733.
  • Florence AT. (2004). Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target 12:65–70.
  • Fujii G, Chang JE, Coley T, et al. (1997). The formation of amphotericin B ion channels in lipid bilayers. Biochemistry 36:4959–68.
  • Hamill RJ. (2013). Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–34.
  • Hancock BC, Parks M. (2000). What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–404.
  • Hao S, Wang B, Wang Y, et al. (2013). Preparation of Eudragit L 100-55 enteric nanoparticles by a novel emulsion diffusion method. Colloids Surf B Biointerf 108:127–33.
  • ISO, (2009). Biological evaluation of medical devices – part 5: testes for in vitro cytotoxicity. International Organization for Standardization.
  • Kalam MA, Sultana Y, Ali A, et al. (2013). Part I: development and optimization of solid-lipid nanoparticles using Box–Behnken statistical design for ocular delivery of gatifloxacin. J Biomed Mater Res 101A:1813–27.
  • Khan MZI, Prebeg Ž, Kurjaković N. (1999). A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers: I. Manipulation of drug release using Eudragit® L100-55 and Eudragit® S100 combinations. J Control Release 58:215–22.
  • Kulkarni SA, Feng SS. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30:2512–22.
  • Lee MK, Kim MY, Kim S, et al. (2009). Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci 98:4808–17.
  • Lemke A, Kiderlen AF, Kayser O. (2005). Amphotericin B. Appl Microbiol Biotechnol 68:151–62.
  • Li MG, Lu WL, Wang JC, et al. (2006). Preparation and characterization of insulin nanoparticles employing chitosan and poly(methylmethacrylate/methylmethacrylic acid) copolymer. J Nanosci Nanotechnol 6:2874–86.
  • Manconi M, Manca ML, Escribano-Ferrer E, et al. (2019). Nanoformulation of curcumin-loaded Eudragit-nutriosomes to counteract malaria infection by a dual strategy: improving antioxidant intestinal activity and systemic efficacy. Int J Pharm 556:82–8.
  • Mehnert W, Mäder K. (2001). Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–96.
  • Moustafine R, Margulis E, Sibgatullina L, et al. (2008). Comparative evaluation of interpolyelectrolyte complexes of chitosan with Eudragit® L100 and Eudragit® L100-55 as potential carriers for oral controlled drug delivery. Eur J Pharm Biopharm 70:215–25.
  • Müller RH, Radtke M, Wissing SA. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155.
  • Neves AR, Queiroz JF, Costa Lima SA, et al. (2016). Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: relevance for oral drug delivery. J Colloid Interf Sci 463:258–65.
  • Niamprem P, Srinivas S, Tiyaboonchai W. (2018). Development and characterization of indomethacin-loaded mucoadhesive nanostructured lipid carriers for topical ocular delivery. Int J Appl Pharm 10:91.
  • Osei-Twum JA, Wasan KM. (2015). Does P-glycoprotein contribute to amphotericin B epithelial transport in Caco-2 cells? Drug Dev Ind Pharm 41:1130–6.
  • Ouellette M, Drummelsmith J, Papadopoulou B. (2004). Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7:257–66.
  • Pardeike J, Hommoss A, Müller RH. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–84.
  • Pataranapa N, Waree T, Supaporn L. (2019). Amphotericin B loaded nanostructured lipid carriers for parenteral delivery: characterization, antifungal and in vitro toxicity assessment. Curr Drug Deliv 16:645–53.
  • Sauer D, McGinity J. (2009). Properties of theophylline tablets dry powder coated with Eudragit E PO and Eudragit L 100-55. Pharm Dev Technol 14:632–41.
  • Shahgaldian P, Gualbert J, Aïssa K, et al. (2003). A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Eur J Pharm Biopharm 55:181–4.
  • Shete H, Patravale V. (2013). Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization. Int J Pharm 454:573–83.
  • Trevaskis NL, Charman WN, Porter CJH. (2008). Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 60:702–16.
  • Venkateswarlu V, Manjunath K. (2004). Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 95:627–38.
  • Volmer AA, Szpilman AM, Carreira EM. (2010). Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep 27:1329–49.
  • Wang XQ, Zhang Q. (2012). pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur J Pharm Biopharm 82:219–29.
  • Wasan EK, Bartlett K, Gershkovich P, et al. (2009). Development and characterization of oral lipid-based Amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int J Pharm 372:76–84.
  • Williams HD, Trevaskis NL, Charman SA, et al. (2013). Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499.
  • Wissing SA, Kayser O, Müller RH. (2004). Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–72.
  • Wulff R, Leopold CS. (2016). Coatings of Eudragit® RL and L-55 blends: investigations on the drug release mechanism. AAPS PharmSciTech 17:493–503.
  • Yang Z, Chen M, Yang M, et al. (2014). Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomed 9:327–36.
  • Yee SY. (1997). In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharn Res 14:763–6.