1,600
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Acylation of the antimicrobial peptide CAMEL for cancer gene therapy

, , , , , & show all
Pages 964-973 | Received 11 May 2020, Accepted 22 Jun 2020, Published online: 02 Jul 2020

References

  • Andreu D, Ubach J, Boman A, et al. (1992). Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett 296:190–4.
  • Arukuusk P, Parnaste L, Margus H, et al. (2013). Differential endosomal pathways for radically modified peptide vectors. Bioconjug Chem 24:1721–32.
  • Baxter AA, Lay FT, Poon IKH, et al. (2017). Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 74:3809–25.
  • Boisguerin P, Deshayes S, Gait MJ, et al. (2015). Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 87:52–67.
  • Bono N, Ponti F, Mantovani D, Candiani G. (2020). Non-viral in vitro gene delivery: it is now time to set the bar. Pharmaceutics 12:183.
  • Chen J, Wang K, Wu J, et al. (2019). Polycations for gene delivery: dilemmas and solutions. Bioconjug Chem 30:338–49.
  • Chen M, Mao A, Xu M, et al. (2019). CRISPR-Cas9 for cancer therapy: opportunities and challenges. Cancer Lett 447:48–55.
  • Cheok CF, Verma CS, Baselga J, Lane DP. (2011). Translating p53 into the clinic. Nat Rev Clin Oncol 8:25–37.
  • Dash PR, Read ML, Barrett LB, et al. (1999). Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther 6:643–50.
  • Deshayes S, Morris M, Heitz F, Divita G. (2008). Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 60:537–47.
  • Duffy MJ, Synnott NC, McGowan PM, et al. (2014). p53 as a target for the treatment of cancer. Cancer Treat Rev 40:1153–60.
  • Dutta C, Chakraborty K, Sinha Roy R. (2015). Engineered nanostructured facial lipopeptide as highly efficient molecular transporter. ACS Appl Mater Interfaces 7:18397–405.
  • Erbacher P, Roche AC, Monsigny M, Midoux P. (1996). Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Exp Cell Res 225:186–94.
  • Ferrer-Miralles N, Vazquez E, Villaverde A. (2008). Membrane-active peptides for non-viral gene therapy: making the safest easier. Trends Biotechnol 26:267–75.
  • Gomez-Manzano C, Fueyo J, Kyritsis AP, et al. (1996). Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 56:694–9.
  • Henriques ST, Melo MN, Castanho MA. (2006). Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399:1–7.
  • Hill AB, Chen M, Chen CK, et al. (2016). Overcoming gene-delivery hurdles: physiological considerations for nonviral vectors. Trends Biotechnol 34:91–105.
  • Hoskin DW, Ramamoorthy A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–75.
  • Hou KK, Pan H, Schlesinger PH, Wickline SA. (2015). A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol Adv 33:931–40.
  • Hoyer J, Neundorf I. (2012). Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res 45:1048–56.
  • Katayama S, Hirose H, Takayama K, et al. (2011). Acylation of octaarginine: implication to the use of intracellular delivery vectors. J Control Rel 149:29–35.
  • Komin A, Russell LM, Hristova KA, Searson PC. (2017). Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges. Adv Drug Deliv Rev 110–111:52–64.
  • Kullberg M, McCarthy R, Anchordoquy TJ. (2013). Systemic tumor-specific gene delivery. J Control Rel 172:730–6.
  • Lachelt U, Wagner E. (2015). Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 115:11043–78.
  • Lehto T, Ezzat K, Wood MJA, Andaloussi SE. (2016). Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106:172–82.
  • Lehto T, Simonson OE, Mager I, et al. (2011). A peptide-based vector for efficient gene transfer in vitro and in vivo. Mol Ther 19:1457–67.
  • Lehto T, Vasconcelos L, Margus H, et al. (2017). Saturated fatty acid analogues of cell-penetrating peptide PepFect14: role of fatty acid modification in complexation and delivery of splice-correcting oligonucleotides. Bioconjug Chem 28:782–92.
  • Lemos A, Leao M, Soares J, et al. (2016). Medicinal chemistry strategies to disrupt the p53-MDM2/MDMX interaction. Med Res Rev 36:789–844.
  • Li J, Wang Y, Zhu Y, Oupický D. (2013). Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J Control Release 172:589–600.
  • Liu Y, Xu CF, Iqbal S, et al. (2017). Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer. Adv Drug Deliv Rev 115:98–114.
  • Margus H, Padari K, Pooga M. (2012). Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther 20:525–33.
  • McCarthy HO, McCaffrey J, McCrudden CM, et al. (2014). Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Rel 189:141–9.
  • Milletti F. (2012). Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–60.
  • Morais CM, Cardoso AM, Cunha PP, et al. (2018). Acylation of the S413-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery: relevance of peptide/lipid interactions. Biochim Biophys Acta Biomembr 1860:2619–34.
  • Nakase I, Akita H, Kogure K, et al. (2012). Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res 45:1132–9.
  • Nguyen HK, Lemieux P, Vinogradov SV, et al. (2000). Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther 7:126–38.
  • Pack DW, Hoffman AS, Pun S, Stayton PS. (2005). Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–93.
  • Raucher D, Ryu JS. (2015). Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21:560–70.
  • Roma-Rodrigues C, Rivas-Garcia L, Baptista PV, Fernandes AR. (2020). Gene therapy in cancer treatment: why go nano? Pharmaceutics 12:233.
  • Senzer N, Nemunaitis J, Nemunaitis D, et al. (2013). Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21:1096–103.
  • Sharma R, Shivpuri S, Anand A, et al. (2013). Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery. Mol Pharm 10:2588–600.
  • Shono T, Tofilon PJ, Schaefer TS, et al. (2002). Apoptosis induced by adenovirus-mediated p53 gene transfer in human glioma correlates with site-specific phosphorylation. Cancer Res 62:1069–76.
  • Smolarczyk R, Cichoń T, Kamysz W, et al. (2010). Anticancer effects of CAMEL peptide. Lab Invest 90:940–52.
  • Splith K, Neundorf I. (2011). Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40:387–97.
  • Suchaoin W, Mahmood A, Netsomboon K, Bernkop-Schnürch A. (2017). Zeta-potential-changing nanoparticles conjugated with cell-penetrating peptides for enhanced transfection efficiency. Nanomedicine 12:963–75.
  • Sun Y, Yang Z, Wang C, et al. (2017). Exploring the role of peptides in polymer-based gene delivery. Acta Biomater 60:23–37.
  • Taylor RE, Zahid M. (2020). Cell penetrating peptides, novel vectors for gene therapy. Pharmaceutics 12:225.
  • Teo PY, Cheng W, Hedrick JL, Yang YY. (2016). Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev 98:41–63.
  • van Beusechem VW, van den Doel PB, Gerritsen WR. (2005). Conditionally replicative adenovirus expressing degradation-resistant p53 for enhanced oncolysis of human cancer cells overexpressing murine double minute 2. Mol Cancer Ther 4:1013–18.
  • Varkouhi AK, Scholte M, Storm G, Haisma HJ. (2011). Endosomal escape pathways for delivery of biologicals. J Control Rel 151:220–8.
  • Wade M, Li YC, Wahl GM. (2013). MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83–96.
  • Wang HY, Chen JX, Sun YX, et al. (2011). Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Rel 155:26–33.
  • Xiang S, Tong H, Shi Q, et al. (2012). Uptake mechanisms of non-viral gene delivery. J Control Rel 158:371–8.
  • Xu J, Khan AR, Fu M, et al. (2019). Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Rel 309:106–24.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. (2014). Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–55.
  • Zhang W, Song J, Liang R, et al. (2013). Stearylated antimicrobial peptide melittin and its retro isomer for efficient gene transfection. Bioconjug Chem 24:1805–12.
  • Zhou Z, Liu X, Zhu D, et al. (2017). Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 115:115–54.