1,875
Views
7
CrossRef citations to date
0
Altmetric
Original Investigation

Optimization, and in vitro and in vivo evaluation of etomidate intravenous lipid emulsion

, , , , , , , & show all
Pages 873-883 | Received 15 Mar 2021, Accepted 12 Apr 2021, Published online: 07 May 2021

References

  • Agrawal U, Chashoo G, Sharma PR, et al. (2015). Tailored polymer-lipid hybrid nanoparticles for the delivery of drug conjugate: dual strategy for brain targeting. Colloids Surf B Biointerfaces 126:414–25.
  • Ahmed HH, Galal AF, Shalby AB, et al. (2018). Improving anti-cancer potentiality and bioavailability of gallic acid by designing polymeric nanocomposite formulation. Asian Pac J Cancer Prev 19:3137–46.
  • Anez-Bustillos L, Dao DT, Baker MA, et al. (2016). Intravenous fat emulsion formulations for the adult and pediatric patient: understanding the differences. Nutr Clin Pract 31:596–609.
  • Bernardi DS, Pereira TA, Maciel NR, et al. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnol 9:44.
  • Carpentier YA, Simoens C, Siderova V, et al. (1997). Recent developments in lipid emulsions: relevance to intensive care. Nutrition 13:73s–8s.
  • Doenicke A, Roizen MF, Hoernecke R, et al. (1997). Haemolysis after etomidate: comparison of propylene glycol and lipid formulations. Br J Anaesth 79:386–8.
  • Doenicke AW, Roizen MF, Hoernecke R, et al. (1999). Solvent for etomidate may cause pain and adverse effects. Br J Anaesth 83:464–6.
  • Dong W, Zhang L, Niu Y, et al. (2013). A stable and practical etoposide-containing intravenous long-/medium-chain triglycerides-based lipid emulsion formulation: pharmacokinetics, biodistribution, toxicity, and antitumor efficacy. Expert Opin Drug Deliv 10:559–71.
  • Elmowafy M, Alruwaili NK, Shalaby K, et al. (2020). Long-acting paliperidone parenteral formulations based on polycaprolactone nanoparticles; the influence of stabilizer and chitosan on in vitro release, protein adsorption, and cytotoxicity. Pharmaceutics 12:160.
  • Erdoes G, Basciani RM, Eberle B. (2014). Etomidate–a review of robust evidence for its use in various clinical scenarios. Acta Anaesthesiol Scand 58:380–9.
  • Forman SA, Warner DS. (2011). Clinical and molecular pharmacology of etomidate. Anesthesiology 114:695–707.
  • Ganzberg S. (2017). The FDA warning on anesthesia drugs. Anesth Prog 64:57–8.
  • Gill RS, Scott RP. (1992). Etomidate shortens the onset time of neuromuscular block. Br J Anaesth 69:444–6.
  • Gou J, Chao Y, Liang Y, et al. (2016). Humid heat autoclaving of hybrid nanoparticles achieved by decreased nanoparticle concentration and improved nanoparticle stability using medium chain triglycerides as a modifier. Pharm Res 33:2140–51.
  • Gou J, Feng S, Liang Y, et al. (2017). Polyester-solid lipid mixed nanoparticles with improved stability in gastro-intestinal tract facilitated oral delivery of larotaxel. Mol. Pharmaceutics14:3750–61.
  • Janssen PA, Niemegeers CJ, Marsboom RP. (1975). Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea-pigs, rabbits and dogs. Arch Int Pharmacodyn Ther 214:92–132.
  • Latson TW, McCarroll SM, Mirhej MA, et al. (1992). Effects of three anesthetic induction techniques on heart rate variability. J Clin Anesth 4:265–76.
  • Li Y, Jin W, Yan H, et al. (2013). Development of intravenous lipid emulsion of vinorelbine based on drug-phospholipid complex technique. Int J Pharm 454:472–7.
  • Lin Y, Pan Y, Shi Y, et al. (2012). Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology 23:165101.
  • Luo L, Chen Q, Wei N, et al. (2019). The modulation of drug-loading stability within lipid membranes via medium chain triglycerides incorporation. Int J Pharm 566:371–82.
  • Meuldermans WE, Heykants JJ (1976). The plasma protein binding and distribution of etomidate in dog, rat and human blood. Arch Int Pharmacodyn Ther 221:150–62.
  • Moghimi SM, Szebeni J. (2003). Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–78.
  • Moss E, Powell D, Gibson RM, et al. (1979). Effect of etomidate on intracranial pressure and cerebral perfusion pressure. Br J Anaesth 51:347–52.
  • Powell KC, Damitz R, Chauhan A. (2017). Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant. Int J Pharm 521:8–18.
  • Raman M, Almutairdi A, Mulesa L, et al. (2017). Parenteral nutrition and lipids. Nutrients 9:388.
  • Salmela L and Washington C. (2014). A continuous flow method for estimation of drug release rates from emulsion formulations. Int J Pharm 472:276–81.
  • Shi S, Chen H, Lin X, et al. (2010). Pharmacokinetics, tissue distribution and safety of cinnarizine delivered in lipid emulsion. Int J Pharm 383:264–70.
  • Ton MN, Chang C, Carpentier YA, et al. (2005). In vivo and in vitro properties of an intravenous lipid emulsion containing only medium chain and fish oil triglycerides. Clin Nutr 24:492–501.
  • Vanlersberghe C, Camu F. (2008). Etomidate and other non-barbiturates. Handb Exp Pharmacol 182:267–82.
  • Wang B, Tian H and Xiang D. (2020). Stabilizing the oil-in-water emulsions using the mixtures of dendrobium officinale polysaccharides and gum arabic or propylene glycol alginate. Molecules, 25:759.
  • Weng D, Huang M, Jiang R, et al. (2013). Clinical study of etomidate emulsion combined with remifentanil in general anesthesia. Drug Des Devel Ther 7:771–6.
  • Wu W, Wang Y, Que L. (2006). Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm 63:288–94.
  • Xiao K, Li Y, Luo J, et al. (2011). The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32:3435–46.
  • Zhang K, Lv S, Li X, et al. (2013). Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin. Int J Nanomedicine 8:3227–39.