1,708
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Scalable flibanserin nanocrystal-based novel sublingual platform for female hypoactive sexual desire disorder: engineering, optimization adopting the desirability function approach and in vivo pharmacokinetic study

&
Pages 1301-1311 | Received 16 Apr 2021, Accepted 31 May 2021, Published online: 26 Jun 2021

References

  • Adachi M, Hinatsu Y, Kusamori K, et al. (2015). Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers. Eur J Pharm Sci 76:225–30.
  • Ahmed IS, Elnahas OS, Assar NH, et al. (2020). Nanocrystals of fusidic acid for dual enhancement of dermal delivery and antibacterial activity: in vitro, ex vivo and in vivo evaluation. Pharmaceutics 12:199.
  • Ahmed RM, Abdallah IA. (2020). Univariate and chemometrics-assisted spectrophotometric methods for determination of flibanserin in a recently released dosage form. J Appl Spectrosc 87:976–85.
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. 5th ed. Washington (DC): American Journal of Psychiatry.
  • Bayrak Z, Tas C, Tasdemir U, et al. (2011). Formulation of zolmitriptan sublingual tablets prepared by direct compression with different polymers: in vitro and in vivo evaluation. Eur J Pharm Biopharm 78:499–505.
  • Clayton AH, Brown L, Kim NN. (2020). Evaluation of safety for flibanserin. Expert Opin Drug Saf 19:1–8.
  • Clayton AH, Kingsberg SA, Goldstein I. (2018). Evaluation and management of hypoactive sexual desire disorder. Sex Med 6:59–74.
  • Convention USP. (2012). The United States Pharmacopeia 2014: USP 37. Rockville (MD): United States Pharmacopeial Convention.
  • Council of Europe. (2017). European Pharmacopoeia, 9th ed. Strasbourg (France): Council of Europe.
  • Dali MM, Moench PA, Mathias NR, et al. (2006). A rabbit model for sublingual drug delivery: comparison with human pharmacokinetic studies of propranolol, verapamil and captopril. J Pharm Sci 95:37–44.
  • Dinda SC, Panda SK. (2014). Formulation and in vitro/in vivo assessment of enhanced bioavailability of lacidipine using nano pure technique. Albanian J Pharm Sci 1:20–5.
  • Dziemidowicz K, Lopez FL, Bowles BJ, et al. (2018). Co-processed excipients for dispersible tablets-part 2: patient acceptability. AAPS PharmSciTech 19:2646–57.
  • El Assasy A-HI, Younes NF, Makhlouf AIA. (2019). Enhanced oral absorption of amisulpride via a nanostructured lipid carrier-based capsules: development, optimization applying the desirability function approach and in vivo pharmacokinetic study. AAPS PharmSciTech 20:82.
  • English C, Muhleisen A, Rey JA. (2017). Flibanserin (Addyi): the first FDA-approved treatment for female sexual interest/arousal disorder in premenopausal women. P&T 42:237–41.
  • Fong SYK, Ibisogly A, Bauer-Brandl A. (2015). Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: spray drying versus freeze-drying. Int J Pharm 496:382–91.
  • Goswami T, Jasti BR, Li X. (2008). Sublingual drug delivery. Crit Rev Ther Drug Carr Syst 25:449–84.
  • Hao J, Gao Y, Zhao J, et al. (2015). Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech 16:118–28.
  • He L, You W, Wang S, et al. (2019). A rapid and sensitive UPLC-MS/MS method for the determination of flibanserin in rat plasma: application to a pharmacokinetic study. BMC Chem 13:1–8.
  • Honary S, Zahir F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop J Pharm Res 12:265–73.
  • Joffe HV, Chang C, Sewell C, et al. (2016). FDA approval of flibanserin-treating hypoactive sexual desire disorder. N Engl J Med 374:101–4.
  • Joseph Naguib M, Moustafa Kamel A, Thabet Negmeldin A, et al. (2020). Molecular docking and statistical optimization of taurocholate-stabilized galactose anchored bilosomes for the enhancement of sofosbuvir absorption and hepatic relative targeting efficiency. Drug Deliv 27:996–1009.
  • Kassem MAA, ElMeshad AN, Fares AR. (2017). Enhanced solubility and dissolution rate of lacidipine nanosuspension: formulation via antisolvent sonoprecipitation technique and optimization using Box-Behnken design. AAPS PharmSciTech 18:983–96.
  • Khinchi MP, Gupta MK, Bhandari A, et al. (2011). Design and development of orally disintegrating tablets of famotidine prepared by direct compression method using different superdisintegrants. J Appl Pharm Sci 1:50–8.
  • Klancke J. (2003). Dissolution testing of orally disintegrating tablets. Dissolution Technol 10:6–8.
  • Kotak DJ, Devarajan PV. (2020). Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomedicine 24:102153.
  • Leal-Júnior CC, Amorim MMR, Souza GFA, et al. (2020). Effectiveness of an oral versus sublingual loading dose of nifedipine for tocolysis. Int J Gynaecol Obstet 148:310–5.
  • Li J, Wu Y. (2014). Lubricants in pharmaceutical solid dosage forms. Lubricants 2:21–43.
  • Lippincott Williams & Wilkins. (2011). Martin’s physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. 6th ed. Baltimore (MD): Lippincott Williams & Wilkins.
  • Mehanna MM, Mneimneh AT, Domiati S, Allam AN. (2020). Tadalafil-loaded limonene-based orodispersible tablets: formulation, in vitro characterization and in vivo appraisal of gastroprotective activity. Int J Nanomedicine 15:10099–112.
  • Moqbel HA, ElMeshad AN, El-Nabarawi MA. (2016). A pharmaceutical study on chlorzoxazone orodispersible tablets: formulation, in vitro and in vivo evaluation. Drug Deliv 23:2998–3007.
  • Naguib MJ, Salah S, Abdel Halim SA, Badr-Eldin SM. (2020). Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J Pharm 582:119302.
  • Nour SA, Shawky Abdelmalak N, Naguib MJ. (2015). Bumadizone calcium dihydrate microspheres compressed tablets for colon targeting: formulation, optimization and in vivo evaluation in rabbits. Drug Deliv 22:286–97.
  • Odou P, Barthélémy C, Chatelier D, et al. (1999). Pharmacokinetics of midazolam: comparison of sublingual and intravenous routes in rabbit. Eur J Drug Metab Pharmacokinet 24:1–7.
  • Peltonen L, Hirvonen J. (2018). Drug nanocrystals - versatile option for formulation of poorly soluble materials. Int J Pharm 537:73–83.
  • Rahim H, Sadiq A, Khan S, et al. (2017). Aceclofenac nanocrystals with enhanced in vitro, in vivo performance: formulation optimization, characterization, analgesic and acute toxicity studies. Drug Des Devel Ther 11:2443–52.
  • Rakkaew P, Suksiriworapong J, Chantasart D. (2018). β-Cyclodextrin-based ternary complexes of haloperidol and organic acids: the effect of organic acids on the drug solubility enhancement. Pharm Dev Technol 23:715–22.
  • Rawas-Qalaji MM, Estelle F, Simons R, Simons KJ. (2006). Fast-disintegrating sublingual tablets: effect of epinephrine load on tablet characteristics. AAPS PharmSciTech 7:E72–8.
  • Reagan‐Shaw S, Nihal M, Ahmad N. (2008). Dose translation from animal to human studies revisited. FASEB J 22:659–61.
  • Rolf-Stefan BW, Julia BM. (2011). Formulations off libanserin. US2011/0045090A1.
  • Salah S, Awad GEA, Makhlouf AIA. (2018). Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: formulation development and in vivo therapeutic efficacy in rats. Eur J Pharm Sci 114:255–66.
  • Sheu MT, Hsieh CM, Chen RN, et al. (2016). Rapid-onset sildenafil sublingual drug delivery systems: in vitro evaluation and in vivo pharmacokinetic studies in rabbits. J Pharm Sci 105: 2774–81.
  • Sinha B, Müller RH, Möschwitzer JP. (2013). Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 453:126–41.
  • Song Q, Shen C, Shen B, et al. (2018). Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J Drug Deliv Sci Technol 43:243–52.
  • Sprout Pharmaceuticals. (2015). Highlights of prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022526lbl.pdf
  • Tayel SA, El Nabarawi MA, Amin MM, AbouGhaly MHH. (2017). Comparative study between different ready-made orally disintegrating platforms for the formulation of sumatriptan succinate sublingual tablets. AAPS PharmSciTech 18:410–23.
  • Turunen E, Mannila J, Laitinen R, et al. (2011). Fast-dissolving sublingual solid dispersion and cyclodextrin complex increase the absorption of perphenazine in rabbits. J Pharm Pharmacol 63:19–25.
  • USFDA. (2021). Dissolution methods. Available at: https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults.cfm
  • Xia D, Quan P, Piao H, et al. (2010). Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci 40:325–34.
  • Younes NF, El Assasy A-HI, Makhlouf AIA. (2021). Microenvironmental pH-modified Amisulpride-Labrasol matrix tablets: development, optimization and in vivo pharmacokinetic study. Drug Deliv Transl Res 11:103–17.
  • Yousef AR, Al-Khaimah R, Zaman Q, Al-Khaimah R. (2005). Instant dissolving tablet composition for loratidine and desloratidine. US2005/0214365A1.
  • Zong L, Li X, Wang H, et al. (2017). Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(β-Benzyl-l-aspartate) (PEG-PBLA). Int J Pharm 531:108–17.