9,324
Views
66
CrossRef citations to date
0
Altmetric
Research Article

Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review

, , , , , , & show all
Pages 1342-1355 | Received 06 Apr 2021, Accepted 07 Jun 2021, Published online: 28 Jun 2021

References

  • Allen C, Evans JC. (2020). 'Hip to be square': designing PLGA formulations for the future. J Control Release 319:487–8.
  • Allison SD. (2008). Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic)acid microparticle drug delivery systems. J Pharm Sci 97:2022–35.
  • Andhariya JV, Burgess DJ. (2016). Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv 13:593–608.
  • Andhariya JV, Jog R, Shen J, et al. (2019a). In vitro–in vivo correlation of parenteral PLGA microspheres: effect of variable burst release. J Control Release 314:25–37.
  • Andhariya JV, Shen J, Choi S, et al. (2017). Development of in vitro–in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release 255:27–35.
  • Andhariya JV, Shen J, Wang Y, et al. (2019b). Effect of minor manufacturing changes on stability of compositionally equivalent PLGA microspheres. Int J Pharm 566:532–40.
  • Astete CE, Sabliov CM. (2006). Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 17:247–89.
  • Biondi M, Ungaro F, Quaglia F, et al. (2008). Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60:229–42.
  • Bock N, Dargaville TR, Woodruff MA. (2012). Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37:1510–51.
  • Bouissou C, Rouse JJ, Price R, et al. (2006). The influence of surfactant on PLGA microsphere glass transition and water sorption: remodeling the surface morphology to attenuate the burst release. Pharm Res 23:1295–305.
  • Bragagni M, Gil-Alegre ME, Mura P, et al. (2018). Improving the therapeutic efficacy of prilocaine by PLGA microparticles: preparation, characterization and in vivo evaluation. Int J Pharm 547:24–30.
  • Brunner A, Mäder K, Göpferich A. (1999). pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm Res 16:847–53.
  • Burgess DJ, Duffy E, Etzler F, et al. (2004). Particle size analysis: AAPS workshop report, cosponsored by the Food and Drug Administration and the United States Pharmacopeia. AAPS J 6:e20.
  • Cha Y, Pitt CG. (1989). The acceleration of degradation-controlled drug delivery from polyester microspheres. J Control Release 8:259–65.
  • Chengcheng Z, Yang H, Shen L, et al. (2019). Microfluidic preparation of PLGA microspheres as cell carriers with sustainable Rapa release. J Biomater Sci Polym Ed 30:737–55.
  • D’Souza S, Faraj JA, Dorati R, DeLuca PP. (2015). Enhanced degradation of lactide-co-glycolide polymer with basic nucleophilic drugs. Adv Pharmacol 2015:1–10.
  • Dawes GJS, Fratila-Apachitei LE, Mulia K, et al. (2009). Size effect of PLGA spheres on drug loading efficiency and release profiles. J Mater Sci Mater Med 20:1089–94.
  • Desai N. (2012). Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–95.
  • Deshmukh R, Wagh P, Naik J. (2016). Solvent evaporation and spray drying technique for micro- and nanospheres/particles preparation: a review. Dry Technol 34:1758–72.
  • Di J, Gao X, Du Y, et al. (2020). Size, shape, charge and "stealthy" surface: carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci;
  • Dunne M, Corrigan I, Ramtoola Z. (2000). Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21:1659–68.
  • Erbetta CDC, Alves RJ, Resende JM. (2012). Synthesis and characterization of poly(d,l-lactide-co-glycolide) copolymer. J Biomater Nanobiotechnol 3:208–25.
  • Farah S, Anderson DG, Langer R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev 107:367–92.
  • Feng Q, Wu J, Yang T, et al. (2014). Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater 10:4247–56.
  • Freitas S, Merkle HP, Gander B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release 102:313–32.
  • Fu K, Pack DW, Klibanov AM, et al. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 17:100–6.
  • Gaignaux A, Réeff J, De Vriese C, et al. (2013). Evaluation of the degradation of clonidine-loaded PLGA microspheres. J Microencapsul 30:681–91.
  • Gasmi H, Danede F, Siepmann J, et al. (2015a). Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies. J Control Release 213:120–7.
  • Gasmi H, Willart JF, Danede F, et al. (2015b). Importance of PLGA microparticle swelling for the control of prilocaine release. J Drug Deliv Sci Technol 30:123–32.
  • Gentile P, Chiono V, Carmagnola I, et al. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–59.
  • Graham PD, Brodbeck KJ, McHugh AJ. (1999). Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release 58:233–45.
  • Gu B, Wang Y, Burgess DJ. (2015). In vitro and in vivo performance of dexamethasone loaded PLGA microspheres prepared using polymer blends. Int J Pharm 496:534–40.
  • Hadar J, Skidmore S, Garner J, et al. (2019). Characterization of branched poly(lactide-co-glycolide) polymers used in injectable, long-acting formulations. J Control Release 304:75–89.
  • Hadar J, Skidmore S, Garner J, et al. (2020). Method matters: development of characterization techniques for branched and glucose-poly(lactide-co-glycolide) polymers. J Control Release 320:484–94.
  • Han FY, Thurecht KJ, Whittaker AK, et al. (2016). Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 7:185.
  • Hossain KMZ, Patel U, Ahmed I. (2015). Development of microspheres for biomedical applications: a review. Prog Biomater 4:1–19.
  • Houchin ML, Neuenswander SA, Topp EM. (2007). Effect of excipients on PLGA film degradation and the stability of an incorporated peptide. J Control Release 117:413–20.
  • Houchin ML, Topp EM. (2008). Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci 97:2395–404.
  • Jafarifar E, Hajialyani M, Akbari M, et al. (2017). Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method. Pharm Dev Technol 22:836–43.
  • Jain RA. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–90.
  • Jiwei L, Xu Y, Wang Y, et al. (2019). Effect of inner pH on peptide acylation within PLGA microspheres. Eur J Pharm Sci 134:69–80.
  • Kang J, Wu F, Cai Y, et al. (2014). Development of recombinant human growth hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. Eur J Pharm Sci 62:141–7.
  • Kapoor DN, Bhatia A, Kaur R, et al. (2015). PLGA: a unique polymer for drug delivery. Ther Deliv 6:41–58.
  • Kazazi-Hyseni F, Landin M, Lathuile A, et al. (2014). Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Pharm Res 31:2844–56.
  • Kumar R, Palmieri MJ Jr. (2010). Points to consider when establishing drug product specifications for parenteral microspheres. AAPS J 12:27–32.
  • Lamprecht A, Ubrich N, Pérez MH, et al. (2000). Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm 196:177–82.
  • Lanao RPF, Leeuwenburgh SCG, Wolke JGC, et al. (2011). In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater 7:3459–68.
  • Liao H, Lanao RPF, van den Beucken JJJP, et al. (2016). Size matters: effects of PLGA-microsphere size in injectable CPC/PLGA on bone formation. J Tissue Eng Regen Med 10:669–78.
  • Liu Y, Ghassemi AH, Hennink WE, et al. (2012). The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials 33:7584–93.
  • Lu Y, Sturek M, Park K. (2014). Microparticles produced by the hydrogel template method for sustained drug delivery. Int J Pharm 461:258–69.
  • Machatschek R, Lendlein A. (2020). Fundamental insights in PLGA degradation from thin film studies. J Control Release 319:276–84.
  • Mao S, Xu J, Cai C, et al. (2007). Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 334:137–48.
  • Martiska J, Snejdrova E, Drastik M, et al. (2019). Terbinafine-loaded branched PLGA-based cationic nanoparticles with modifiable properties. Pharm Dev Technol 24:1308–16.
  • Messaritaki A, Black SJ, van der Walle CF, et al. (2005). NMR and confocal microscopy studies of the mechanisms of burst drug release from PLGA microspheres. J Control Release 108:271–81.
  • Miyajima M, Koshika A, Okada JI, et al. (1998). Factors influencing the diffusion-controlled release of papaverine from poly(l-lactic acid) matrix. J Control Release 56:85–94.
  • Miyajima M, Koshika A, Okada JI, et al. (1999). Effect of polymer/basic drug interactions on the two-stage diffusion-controlled release from a poly(l-lactic acid) matrix. J Control Release 61:295–304.
  • Mollah AH, Long M, Baseman HS. (2013). Risk management applications in pharmaceutical and biopharmaceutical manufacturing. New Jersey, US: John Wiley & Sons, Inc.
  • Operti MC, Fecher D, van Dinther EAW, et al. (2018). A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles. Int J Pharm 550:140–8.
  • Paliwal R, Babu RJ, Palakurthi S. (2014). Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15:1527–34.
  • Park K, Otte A, Sharifi F, et al. (2021). Potential roles of the glass transition temperature of PLGA microparticles in drug release kinetics. Mol Pharm 18:18–32.
  • Park K, Skidmore S, Hadar J, et al. (2019). Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release 304:125–34.
  • Passerini N, Craig DQ. (2001). An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC. J Control Release 73:111–5.
  • Podzimek S. (2013). Importance of multi-angle light scattering in polyolefin characterization. Macromol Symp 330:81–91.
  • Podzimek S. (2014). Truths and myths about the determination of molar mass distribution of synthetic and natural polymers by size exclusion chromatography. J Appl Polym Sci 131.
  • Politis NS, Colombo P, Colombo G, et al. (2017). Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm 43:889–901.
  • Prajapati SK, Tripathi P, Ubaidulla U, et al. (2008). Design and development of gliclazide mucoadhesive microcapsules: in vitro and in vivo evaluation. AAPS PharmSciTech 9:224–30.
  • Ranjan AP, Mukerjee A, Helson L, et al. (2012). Scale up, optimization and stability analysis of curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnol 10:38.
  • Raquez JM, Degée P, Nabar Y, et al. (2006). Biodegradable materials by reactive extrusion: from catalyzed polymerization to functionalization and blend compatibilization. C R Chim 9:1370–9.
  • Rawat A, Burgess DJ. (2010). Effect of ethanol as a processing co-solvent on the PLGA microsphere characteristics. Int J Pharm 394:99–105.
  • Rawat A, Burgess DJ. (2011). Effect of physical ageing on the performance of dexamethasone loaded PLGA microspheres. Int J Pharm 415:164–8.
  • Reich G. (1998). Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables. Eur J Pharm Biopharm 45:165–71.
  • Sah H. (1997). Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres. J Control Release 47:233–45.
  • Samadi N, Abbadessa A, Di Stefano A, et al. (2013). The effect of lauryl capping group on protein release and degradation of poly(d,l-lactic-co-glycolic acid) particles. J Control Release 172:436–43.
  • Schädlich A, Kempe S, Mäder K. (2014). Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging. J Control Release 179:52–62.
  • Scheiner KC, Maas-Bakker RF, van Steenbergen MJ, et al. (2021). Post-loading of proangiogenic growth factors in PLGA microspheres. Eur J Pharm Biopharm 158:1–10.
  • Schliecker G, Schmidt C, Fuchs S, et al. (2003). Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. Int J Pharm 266:39–49.
  • Selmin F, Blasi P, DeLuca PP. (2012). Accelerated polymer biodegradation of risperidone poly(d,l-lactide-co-glycolide) microspheres. AAPS PharmSciTech 13:1465–72.
  • Sharifi F, Otte A, Yoon G, et al. (2020). Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. J Control Release 325:347–58.
  • Shen J, Choi S, Qu W, et al. (2015). In vitro–in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release 218:2–12.
  • Siegel SJ, Kahn JB, Metzger K, et al. (2006). Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm 64:287–93.
  • Siepmann J, Elkharraz K, Siepmann F, et al. (2005). How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules 6:2312–9.
  • Siepmann J, Göpferich A. (2001). Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48:229–47.
  • Snejdrova E, Drastik M, Dittrich M, et al. (2016). Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir. Drug Dev Ind Pharm 42:1653–9.
  • Snejdrova E, Podzimek S, Martiska J, et al. (2020). Branched PLGA derivatives with tailored drug delivery properties. Acta Pharm 70:63–75.
  • Wang Y, Qu W, Choi SH. (2016). FDA's regulatory science program for generic PLA/PLGA-based drug products. Am Pharm Rev 19:5–9.
  • Wang J, Schwendeman SP. (1999). Mechanisms of solvent evaporation encapsulation processes: prediction of solvent evaporation rate. J Pharm Sci 88:1090–9.
  • Wang J, Helder L, Shao J, et al. (2019). Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: effect of polymer end groups. Int J Pharm 564:1–9.
  • Wang J, Wang BM, Schwendeman SP. (2002). Characterization of the initial burst release of a model peptide from poly(d,l-lactide-co-glycolide) microspheres. J Control Release 82:289–307.
  • Wang L, Yang T, Ma G. (2015). Particle design of membrane emulsification for protein drug and vaccine delivery. Curr Pharm Des 21:2563–98.
  • White JR. (2006). Polymer ageing: physics, chemistry or engineering? Time to reflect. C R Chim 9:1396–408.
  • Wright SG, Rickey ME, Ramstack MJ. (2003). Method for preparing microparticles having a selected polymer molecular weight. Alkermes Controlled Therapeutics, Inc. II, Cambridge, MA (US).
  • Wu L, Zhang J, Jing D, et al. (2006). "Wet-state" mechanical properties of three-dimensional polyester porous scaffolds. J Biomed Mater Res A 76:264–71.
  • Wu Z, Zhao M, Zhang W, et al. (2019). Influence of drying processes on the structures, morphology and in vitro release profiles of risperidone-loaded PLGA microspheres. J Microencapsul 36:21–31.
  • Xiao CD, Shen XC, Tao L. (2013). Modified emulsion solvent evaporation method for fabricating core–shell microspheres. Int J Pharm 452:227–32.
  • Ye Z, Squillante E. (2013). The development and scale-up of biodegradable polymeric nanoparticles loaded with ibuprofen. Colloids Surf A Physiochem Eng Asp 422:75–80.
  • Zhang Y, Schwendeman SP. (2012). Minimizing acylation of peptides in PLGA microspheres. J Control Release 162:119–26.
  • Zhang C, Yang L, Wan F, et al. (2020). Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm 585:119441.
  • Zhu Y, Song F, Ju Y, et al. (2019). NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs in vitro. Int J Nanomedicine 14:787–98.
  • Zimm BH, Kilb RW. (1996). Dynamics of branched polymer molecules in dilute solution. J Polym Sci B Polym Phys 37:1367–90.
  • Zimm BH, Stockmayer WH. (1949). The dimensions of chain molecules containing branches and rings. J Chem Phys 17:1301–14.
  • Zolnik BS, Burgess DJ. (2007). Effect of acidic pH on PLGA microsphere degradation and release. J Control Release 122:338–44.
  • Zolnik BS, Leary PE, Burgess DJ. (2006). Elevated temperature accelerated release testing of PLGA microspheres. J Control Release 112:293–300.