1,712
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Experimental anti-tumor effect of emodin in suspension – in situ hydrogels formed with self-assembling peptide

, , , , , & ORCID Icon show all
Pages 1810-1821 | Received 13 Jun 2021, Accepted 16 Aug 2021, Published online: 02 Sep 2021

References

  • Alisi A, Pastore A, Ceccarelli S, et al. (2012). Emodin prevents intrahepatic fat accumulation, inflammation and redox status imbalance during diet-induced hepatosteatosis in rats. Int J Mol Sci 13:2276–89.
  • Almeida H, Amaral MH, Lobao P, et al. (2014). In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today 19:400–12.
  • Ashwanikumar N, Kumar NA, Saneesh Babu PS, et al. (2016). Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil. Int J Nanomedicine 11:5583–94.
  • Bykov VJN, Eriksson SE, Bianchi J, et al. (2018). Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18:89–102.
  • Chu K, Chen L, Xu W, et al. (2013). Preparation of a paeonol-containing temperature-sensitive in situ gel and its preliminary efficacy on allergic rhinitis. Int J Mol Sci 14:6499–515.
  • Cong Z, Zhang L, Ma SQ, et al. (2020). Size-transformable hyaluronan stacked self-assembling peptide nanoparticles for improved transcellular tumor penetration and photo-chemo combination therapy. ACS Nano 14:1958–70.
  • Cullen JK, Simmons JL, Parsons PG, et al. (2020). Topical treatments for skin cancer. Adv Drug Deliv Rev 153:54–64.
  • Debele TA, Lee KY, Hsu NY, et al. (2017). A pH sensitive polymeric micelle for co-delivery of doxorubicin and α-TOS for colon cancer therapy. J Mater Chem B 5:5870–80.
  • Ding J, Zhang J, Li J, et al. (2019). Electrospun polymer biomaterial. Prog Polym Sci 90:1–34.
  • Eskandari S, Guerin T, Toth I, et al. (2017). Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 110–111:169–87.
  • Feng X, Li J, Zhang X, et al. (2019). Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 302:19–41.
  • Fu ZY, Han JX, Huang HY. (2007). Effects of emodin on gene expression profile in small cell lung cancer NCI-H446 cells. Chin Med J 120:1710–5.
  • He C, Ma H, Cheng Y, et al. (2015). PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for localized and combined treatment of human osteosarcoma. J Control Release 213:e18.
  • Hu X, Wang Y, Zhang L, et al. (2017). Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IA-co-HEMA) hydrogel for release of doxorubicin. Carbohydr Polym 155:242–51.
  • Khaliq NU, Oh KS, Sandra FC, et al. (2017). Assembly of polymer micelles through the sol–gel transition for effective cancer therapy. J Control Release 255:258–69.
  • Lee YS, Kang OH, Choi JG, et al. (2010). Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Pharm Biol 48:1285–90.
  • Li WY, Chan RY, Yu PH, et al. (2013). Emodin induces cytotoxic effect in human breast carcinoma MCF-7 cell through modulating the expression of apoptosis-related genes. Pharm Biol 51:1175–81.
  • Li S, Dong S, Xu W, et al. (2018). Antibacterial hydrogels. Adv Sci 5:1700527.
  • Lin G, Chen CK, Yin F, et al. (2017). Biodegradable nanoparticles as siRNA carriers for in vivo gene silencing and pancreatic cancer therapy. J Mater Chem B 5:3327–37.
  • Liu J, Zhang L, Yang Z, et al. (2011). Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomedicine 6:2643–53.
  • Lu Y, Yang JH, Li X, et al. (2011). Emodin, a naturally occurring anthraquinone derivative, suppresses IgE-mediated anaphylactic reaction and mast cell activation. Biochem Pharmacol 82:1700–8.
  • Mahvi DA, Liu R, Grinstaff MW, et al. (2018). Local cancer recurrence: the realities, challenges, and opportunities for new therapies. CA Cancer J Clin 68:488–505.
  • Mao Z. (2014). Minor clone may drive cancer growth. Cancer Discov 4:1109–10.
  • Meng C, Wei W, Wang Y, et al. (2019). Study of the interaction between self-assembling peptide and mangiferin and in vitro release of mangiferin from in situ hydrogel. Int J Nanomedicine 14:7447–60.
  • Milcovich G, Lettieri S, Antunes FE, et al. (2017). Recent advances in smart biotechnology: hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 249:163–80.
  • Morsi N, Ghorab D, Refai H, et al. (2016). Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm 506:57–67.
  • Norouzi M, Nazari B, Miller DW. (2016). Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 21:1835–49.
  • Ostrom QT, Gittleman H, Liao P, et al. (2017). CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology 19:v1–v88.
  • Pan A, Wang Z, Chen B, et al. (2018). Localized co-delivery of collagenase and trastuzumab by thermosensitive hydrogels for enhanced antitumor efficacy in human breast xenograft. Drug Deliv 25:1495–503.
  • Park K. (2018). Enhanced bacterial cancer therapy with hydroxychloroquine liposomes. J Control Release 280:124.
  • Park B, Yoon W, Yun J, et al. (2019). Emodin-nicotinamide (1:2) cocrystal identified by thermal screening to improve emodin solubility. Int J Pharm 557:26–35.
  • Qiu F, Chen Y, Tang C, et al. (2018). Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 13:5003–22.
  • Qiu H, Guo H, Li D, et al. (2020). Intravesical hydrogels as drug reservoirs. Trends Biotechnol 38:579–83.
  • Saravanan S, Vimalraj S, Thanikaivelan P, et al. (2019). A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 121:38–54.
  • Shamsi F. (2016). Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces. Colloids Surf B Biointerfaces 145:470–8.
  • Taghavi L, Aramvash A, Seyedkarimi MS, et al. (2018). Evaluation of the hemocompatibility of RADA 16-I peptide. J Biomater Appl 32:1024–31.
  • Tarvirdipour S, Schoenenberger CA, Benenson Y, et al. (2020). A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. Soft Matter 16:1678–91.
  • Tu Y, Wu Z, Tan B, et al. (2019). Emodin: its role in prostate cancer-associated inflammation (review). Oncol Rep 42:1259–71.
  • Wang W, Song H, Zhang J, et al. (2015). An injectable, thermosensitive and multicompartment hydrogel for simultaneous encapsulation and independent release of a drug cocktail as an effective combination therapy platform. J Control Release 203:57–66.
  • Wei L, Chen J, Zhao S, et al. (2017). Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomater 58:44–53.
  • Wei W, Li H, Yin C, et al. (2020). Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv 27:460–8.
  • Wei W, Meng C, Wang Y, et al. (2019). The interaction between self-assembling peptides and emodin and the controlled release of emodin from in-situ hydrogel. Artif Cells Nanomed Biotechnol 47:3961–75.
  • Wei W, Tang J, Li H, et al. (2021). Antitumor effects of self-assembling peptide-emodin in situ hydrogels in vitro and in vivo. Int J Nanomedicine 16:47–60.
  • Wu D, Zhang S, Zhao Y, et al. (2018). The effects of motif net charge and amphiphilicity on the self-assembly of functionally designer RADA16-I peptides. Biomed Mater 13:035011.
  • Xiang J, Wu B, Zhou Z, et al. (2018). Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Sci China Life Sci 61:436–47.
  • Xiong L, Luo Q, Wang Y, et al. (2015). An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chem Commun 51:14644–7.
  • Yin X, Gu Y, Qin L, et al. (2021). Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 200:111581.
  • Zeng J, Shi D, Gu Y, et al. (2019). Injectable and near-infrared-responsive hydrogels encapsulating dopamine-stabilized gold nanorods with long photothermal activity controlled for tumor therapy. Biomacromolecules 20:3375–84.
  • Zhang Y, Yu J, Ren K, et al. (2019). Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 20:1478–92.
  • Zhu Y, Liang J, Gao C, et al. (2020). Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release 330:1–55.