2,787
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

[223Ra] RaCl2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era

, , , , , , , & ORCID Icon show all
Pages 186-191 | Received 28 Sep 2021, Accepted 01 Nov 2021, Published online: 04 Jan 2022

References

  • Abbina S, Takeuchi LE, Anilkumar P, et al. (2020). Blood circulation of soft nanomaterials is governed by dynamic remodeling of protein opsonins at nano-biointerface. Nat Commun 11:1–12.
  • Carvalho VFM, Salata GC, de Matos JKR, et al. (2019). Optimization of composition and obtainment parameters of biocompatible nanoemulsions intended for intraductal administration of piplartine (piperlongumine) and mammary tissue targeting. Int J Pharm 567:118460.
  • Cheng L, Kamkaew A, Sun H, et al. (2016). Dual-modality positron emission tomography/optical image-guided photodynamic cancer therapy with chlorin e6-containing nanomicelles. ACS Nano 10:7721–30.
  • Corrêa LB, de Oliveira Henriques MDGM, Rosas EC, et al. (2021). Intra-articular use of radium dichloride ([223Ra] RaCl2) showed relevant anti-inflammatory response on experimental arthritis model. Eur J Nucl Med Mol Imaging 1–9.
  • Danaei M, Dehghankhold M, Ataei S, et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57.
  • Dos Santos Matos AP, Lopes DCDXP, Peixoto MLH, et al. (2020). Development, characterization, and anti-leishmanial activity of topical amphotericin B nanoemulsions. Drug Deliv Transl Res 10:1552–70.
  • Du Y, Carrio I, De Vincentis G, et al. (2017). Practical recommendations for radium-223 treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 44:1671–8.
  • Ferro F, Elefante E, Luciano N, et al. (2017). One year in review 2017: novelties in the treatment of rheumatoid arthritis. Clin Exp Rheumatol 35:721–34.
  • Guinn VP. (2003). Radioactivity. In: Encyclopedia of physical science and technology. Amsterdam, Netherlands: Elsevier, 661–74.
  • Helal HM, Samy WM, Kamoun EA, et al. (2021). Potential privilege of maltodextrin-α-tocopherol nano-micelles in seizing tacrolimus renal toxicity, managing rheumatoid arthritis and accelerating bone regeneration. Int J Nanomed 16:4781–803.
  • Hosono M, Ikebuchi H, Nakamura Y, et al. (2019). Introduction of the targeted alpha therapy (with Radium-223) into clinical practice in Japan: learnings and implementation. Ann Nucl Med 33:211–21.
  • Huang X, Wan J, Leng D, et al. (2019). Dual‐targeting nanomicelles with CD133 and CD44 aptamers for enhanced delivery of gefitinib to two populations of lung cancer‐initiating cells. Exp Ther Med 19:192–204.
  • Jaiswal M, Dudhe R, Sharma PK. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–7.
  • Jiang X, Bai C, Liu M, Eds. (2020). Nanotechnology and microfluidics. Weinheim (Germany): Wiley.
  • Joseph M, Trinh HM, Mitra AK. (2017). Peptide and protein-based therapeutic agents. In: Mitra A, Cholkar K, Mandal A, eds. Emerging nanotechnologies for diagnostics, drug delivery and medical devices. New York (NY): Elsevier, Inc, 145–167.
  • Li W, Suarato G, Cathcart JM, et al. (2020). Design, characterization, and intracellular trafficking of biofunctionalized chitosan nanomicelles. Biointerphases 15:061003.
  • Liepe K. (2009). Alpharadin, a 223Ra-based alpha-particle-emitting pharmaceutical for the treatment of bone metastases in patients with cancer. Curr Opin Investig Drugs 10:1346–58.
  • Lu H, Utama RH, Kitiyotsawat U, et al. (2015). Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomater Sci 3:1085–95.
  • Magne TM, Helal-Neto E, Correa LB, et al. (2021). Rheumatoid arthritis treatment using hydroxychloroquine and methotrexate co-loaded nanomicelles: in vivo results. Colloids Surf B Biointerfaces 206:111952.
  • Meng X-Y, Li J-J, Ni T-J, et al. (2020). Electro-responsive brain-targeting mixed micelles based on Pluronic F127 and d-α-tocopherol polyethylene glycol succinate–ferrocene. Colloids Surfaces A Physicochem Eng Asp 601:124986.
  • Morris MJ, Corey E, Guise TA, et al. (2019). Radium-223 mechanism of action: implications for use in treatment combinations. Nat Rev Urol 16:745–56.
  • Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. (2016). Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine 12:1113–26.
  • Parker C, Nilsson S, Heinrich D, et al. (2013). Alpha emitter Radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–23.
  • Pawar A, Singh S, Rajalakshmi S, et al. (2018). Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting. Artif Cells Nanomed Biotechnol 46:347–61.
  • Raval A, Pillai SA, Bahadur A, Bahadur P. (2017). Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs. J Mol Liq 230:473–81.
  • Ree BJ, Satoh Y, Sik Jin K, et al. (2017). Well-defined and stable nanomicelles self-assembled from brush cyclic and tadpole copolymer amphiphiles: a versatile smart carrier platform. NPG Asia Mater 9:e453–3.
  • Reissig F, Hübner R, Steinbach J, et al. (2019). Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorg Chem Front 6:1341–9.
  • Sartor O, Sharma D. (2018). Radium and other alpha emitters in prostate cancer. Transl Androl Urol 7:436–44.
  • Schuenck-Rodrigues RA, de Oliveira de Siqueira LB, dos Santos Matos AP, et al. (2020). Development, characterization and photobiological activity of nanoemulsion containing zinc phthalocyanine for oral infections treatment. J Photochem Photobiol B Biol 211:112010.
  • Sun X, Wang G, Zhang H, et al. (2018). The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano 12:6179–92.
  • Suominen MI, Wilson T, Käkönen S-M, Scholz A. (2019). The mode-of-action of targeted alpha therapy radium-223 as an enabler for novel combinations to treat patients with bone metastasis. IJMS 20:3899.
  • Tawfik SM, Azizov S, Elmasry MR, et al. (2020). Recent advances in nanomicelles delivery systems. Nanomaterials 11:1–36.
  • Trinh HM, Joseph M, Cholkar K, et al. (2017). Nanomicelles in diagnosis and drug delivery. In: Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier, 45–58.
  • Wang J, Poon C, Chin D, et al. (2018). Design and in vivo characterization of kidney-targeting multimodal micelles for renal drug delivery. Nano Res 11:5584–95.
  • Wei T, Chen C, Liu J, et al. (2015). Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci U S A 112:2978–83.
  • Wigner P, Zielinski K, Michlewska S, et al. (2021). Disturbance of cellular homeostasis as a molecular risk evaluation of human endothelial cells exposed to nanoparticles. Sci Rep 11:1–16.
  • Xie J, Gonzalez-Carter D, Tockary TA, et al. (2020). Dual-sensitive nanomicelles enhancing systemic delivery of therapeutically active antibodies specifically into the brain. ACS Nano 14:6729–42.
  • Yu Q, Roberts MG, Houdaihed L, et al. (2021). Investigating the influence of block copolymer micelle length on cellular uptake and penetration in a multicellular tumor spheroid model. Nanoscale 13:280–91.