3,599
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma

, , , , , , , , & show all
Pages 31-42 | Received 12 Oct 2021, Accepted 29 Nov 2021, Published online: 28 Dec 2021

References

  • Cao Y, Wu C, Liu Y, et al. (2020). Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721. Drug Deliv 27:258–68.
  • Chai Z, Ran D, Lu L, et al. (2019). Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 13:5591–601.
  • Chen Z, Zhao P, Luo Z, et al. (2016). Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10:10049–57.
  • Cheng H, Wu Z, Wu C, et al. (2018). Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells. Mater Sci Eng C Mater Biol Appl 83:210–7.
  • Dong P, Rakesh KP, Manukumar HM, et al. (2019). Innovative nano-carriers in anticancer drug delivery—a comprehensive review. Bioorg Chem 85:325–36.
  • D'Orsi B, Mateyka J, Prehn J. (2017). Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 109:162–70.
  • Eloy JO, Ruiz A, Lima d, et al. (2020). EGFR-targeted immunoliposomes efficiently deliver docetaxel to prostate cancer cells. Colloids Surf B Biointerfaces 194:111185.
  • Gao Y, Liu T, Liu X, et al. (2020). Preparation of paclitaxel-folic acid functionalized gelatin grafted mesoporous hollow carbon nanospheres for enhancing antitumor effects toward liver cancer (SMMC-7721) cell lines. J Biomater Appl 34:1071–80.
  • Harris JC, Scully MA, Day ES. (2019). Cancer cell membrane-coated nanoparticles for cancer management. Cancers 11:1836.
  • He MH, Chen L, Zheng T, et al. (2018). Potential applications of nanotechnology in urological cancer. Front Pharmacol 9:745.
  • He Y, Liang S, Long M, et al. (2017). Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. Mater Sci Eng C Mater Biol Appl 78:12–7.
  • He Z, Zhang Y, Feng N. (2020). Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater Sci Eng C Mater Biol Appl 106:110298.
  • Hu C, Lei T, Wang Y, et al. (2020). Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 255:120159.
  • Huang ZG, Lv FM, Wang J, et al. (2019). RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability. Int J Pharm 556:217–25.
  • Huang X, Shi Q, Du S, et al. (2021). Poly-tannic acid coated paclitaxel nanocrystals for combinational photothermal-chemotherapy. Colloids Surf B Biointerfaces 197:111377.
  • Levit SL, Gade NR, Roper TD, et al. (2020). Self-assembly of pH-labile polymer nanoparticles for paclitaxel prodrug delivery: formulation, characterization, and evaluation. Int J Mol Sci 21:9292.
  • Li RH, Zhang Y, Qin S, et al. (2018). Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B 8:14–22.
  • Liu R, An Y, Jia W, et al. (2020). Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Control Release 321:589–601.
  • Liu F, Park JY, Zhang Y, et al. (2010). Targeted cancer therapy with novel high drug-loading nanocrystals. J Pharm Sci 99:3542–51.
  • Liu X, Sun Y, Xu S, et al. (2019). Homotypic cell membrane-cloaked biomimetic nanocarrier for the targeted chemotherapy of hepatocellular carcinoma. Theranostics 9:5828–38.
  • Lu Y, Li Y, Wu W. (2016). Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 6:106–13.
  • Lu Y, Wang ZH, Li T, et al. (2014). Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. J Control Release 176:76–85.
  • Manzur A, Oluwasanmi A, Moss D, et al. (2017). Nanotechnologies in pancreatic cancer therapy. Pharmaceutics 9:39.
  • Mao Y, Zou C, Jiang Y, et al. (2021). Erythrocyte-derived drug delivery systems in cancer therapy. Chin Chem Lett 32:990–8.
  • Mei D, Gong L, Zou Y, et al. (2020). Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. J Control Release 324:341–53.
  • Ni D, Ding H, Liu S, et al. (2015). Superior intratumoral penetration of paclitaxel nanodots strengthens tumor restriction and metastasis prevention. Small 11:2518–26.
  • Noh JK, Naeem M, Cao J, et al. (2016). Herceptin-functionalized pure paclitaxel nanocrystals for enhanced delivery to HER2-postive breast cancer cells. Int J Pharm 513:543–53.
  • Parodi A, Quattrocchi N, van de Ven AL, et al. (2013). Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–8.
  • Psyrri A, Arkadopoulos N, Vassilakopoulou M, et al. (2012). Pathways and targets in hepatocellular carcinoma. Expert Rev Anticancer Ther 12:1347–57.
  • Raza F, Zhu Y, Chen L, et al. (2019). Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 7:2023–36.
  • Soleyman R, Hirbod S, Adeli M. (2015). Advances in the biomedical application of polymer-functionalized carbon nanotubes. Biomater Sci 3:695–711.
  • Wang Y, Liu G, Shi J, et al. (2018). LncRNA DGCR5 represses the development of hepatocellular carcinoma by targeting the miR-346/KLF14 axis. J Cell Physiol 234:572–80.
  • Wei L, Ji Y, Gong W, et al. (2015). Preparation, physical characterization and pharmacokinetic study of paclitaxel nanocrystals. Drug Dev Ind Pharm 41:1343–52.
  • Wu C, Gao Y, Liu Y, et al. (2018). Pure paclitaxel nanoparticles: preparation, characterization, and antitumor effect for human liver cancer SMMC-7721 cells. Int J Nanomedicine 13:6189–98.
  • Yan C, Liang N, Li Q, et al. (2019). Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydr Polym 216:129–39.
  • Zhao R, Li T, Zheng G, et al. (2017). Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials 143:1–16.
  • Zhao J, Du J, Wang J, et al. (2021). Folic acid and poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl Mater Interfaces 13:14577–86.
  • Zhu L, Hao J, Cheng M, et al. (2018). Hyperglycemia-induced Bcl-2/Bax-mediated apoptosis of Schwann cells via mTORC1/S6K1 inhibition in diabetic peripheral neuropathy. Exp Cell Res 367:186–95.
  • Zhu S, Li Y, Zhang Y, et al. (2015). Expression and clinical implications of HAb18G/CD147 in hepatocellular carcinoma. Hepatol Res 45:97–106.
  • Zou H, Zhu J, Huang DS. (2019). Cell membrane capsule: a novel natural tool for antitumour drug delivery. Expert Opin Drug Deliv 16:251–69.