8,645
Views
86
CrossRef citations to date
0
Altmetric
Research Articles

Metal nanoparticles as a promising technology in targeted cancer treatment

, , , ORCID Icon &
Pages 664-678 | Received 12 Dec 2021, Accepted 01 Feb 2022, Published online: 25 Feb 2022

References

  • Ahluwalia J, Avram MM, Ortiz AE. (2020). The evolving story of laser therapeutics for basal cell carcinoma. Dermatol Surg 46:1045–53.
  • Al-Fakeh MS, Osman SOM, Gassoumi M, et al. (2021). Characterization, antimicrobial and anticancer properties of palladium nanoparticles biosynthesized optimally using Saudi propolis. Nanomaterials 11:2666.
  • Al-Musywel HA, Laref A. (2017). Effect of gold nanoparticles on radiation doses in tumor treatment: a Monte Carlo study. Lasers Med Sci 32:2073–80.
  • Ansari Moghaddam S, Rahmani F, Delirezh N. (2017). Investigating the effects of magnesium oxide nanoparticle toxicity on K562 blood type cancer cells. Armaghane Danesh 22:584–94.
  • Ayaz Ahmed KB, Mahapatra SK, Charan Raja MR, et al. (2016). Jacalin-capped silver nanoparticles minimize the dosage use of the anticancer drug, shikonin derivatives, against human chronic myeloid leukemia. RSC Adv 6:18980–9.
  • Baker HW, Snedecor PA, Goss JC, et al. (1982). Regional hyperthermia for cancer. Am J Surg 143:586–90.
  • Balivada S, Rachakatla RS, Wang H, et al. (2010). A/C magnetic hyperthermia of melanoma mediated by iron(o)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10:119.
  • Behnam MA, Emami F, Sobhani Z, Dehghanian AR. (2018). The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model. Iran J Basic Med Sci 21:1133.
  • Bhanumathi R, Manivannan M, Thangaraj R, Kannan S. (2018). Drug-carrying capacity and anticancer effect of the folic acid- and berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega 3:8317–28.
  • Bharathiraja S, Bui NQ, Manivasagan P, et al. (2017). Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep 8:1–16.
  • Bidkar AP, Sanpui P, Ghosh SS. (2017). Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine 12:2641–52.
  • Binu NM, Prema D, Prakash J, et al. (2021). Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids Surf A Physicochem Eng Asp 630:127609.
  • Botteon CEA, Silva LB, Ccana-Ccapatinta G, Silva TS. (2021). Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep 11:1–16.
  • Bray F, Ferlay J, Soerjomataram I, et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424.
  • Cancer. (2022). [Online]. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer [last accessed 2022 Jan 22].
  • Carozza JA, Böhnert V, Nguyen KC, et al. (2020). Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat Cancer 1:184–96.
  • Cędrowska E, Pruszyński M, Gawęda W, et al. (2020). Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225Ac as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer. Molecules 25:1025.
  • Césaire M, Thariat J, Candéias SM, et al. (2018). Combining PARP inhibition, radiation, and immunotherapy: a possible strategy to improve the treatment of cancer? Int J Mol Sci 19:3793.
  • Çeşmeli S, Avci CB. (2019). Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J Drug Target 27:762–6.
  • Chen L, Chen C, Wang P, Song T. (2017). Mechanisms of cellular effects directly induced by magnetic nanoparticles under magnetic fields. J Nanomater 2017:1–13.
  • Chen W-H, Xu X-D, Jia H-Z, et al. (2013). Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials 34:8798–807.
  • Chen W, Yang W, Chen P, et al. (2018). Disulfiram copper nanoparticles prepared with a stabilized metal ion ligand complex method for treating drug-resistant prostate cancers. ACS Appl Mater Interfaces 10:41118–28.
  • Choi J, Kim G, Bin Cho S, Im HJ. (2020). Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnol 18:122.
  • Chung I-M, Rahuman AA, Marimuthu S, et al. (2017). Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med 14:18–24.
  • Dang Y, Guan J. (2020). Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 1:10–9.
  • De Matteis V, Malvindi MA, Galeone A, et al. (2015). Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine 11:731–9.
  • Dhanavel S, Nivethaa EAK, Narayanan V, Stephen A. (2017). In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells. Mater Sci Eng C Mater Biol Appl 75:1399–410.
  • Dhavale RP, Dhavale RP, Sahoo SC, et al. (2021). Chitosan coated magnetic nanoparticles as carriers of anticancer drug telmisartan: pH-responsive controlled drug release and cytotoxicity studies. J Phys Chem Solids 148:109749.
  • Di Pietro P, Zaccaro L, Comegna D, et al. (2016). Silver nanoparticles functionalized with a fluorescent cyclic RGD peptide: a versatile integrin targeting platform for cells and bacteria. RSC Adv 6:112381–92.
  • Ding J, Chen G, Chen G, et al. (2019). One-pot synthesis of epirubicin-capped silver nanoparticles and their anticancer activity against HepG2 cells. Pharmaceutics 11:123.
  • Dwivedi P, Kiran S, Han S, et al. (2020). Magnetic targeting and ultrasound activation of liposome–microbubble conjugate for enhanced delivery of anticancer therapies. ACS Appl Mater Interfaces 12:23737–51.
  • Edis Z, Wang J, Waqas MK, et al. (2021). Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomedicine 16:1313–30.
  • Fard AE, Tavakoli MB, Salehi H, Emami H. (2017). Synergetic effects of docetaxel and ionizing radiation reduced cell viability on MCF-7 breast cancer cell. Appl Cancer Res 37:29.
  • Farzin A, Etesami SA, Quint J, et al. (2020). Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater 9:e1901058.
  • Fernandes AR, Baptista PV. (2017). Gene silencing using multifunctionalized gold nanoparticles for cancer therapy. Methods Mol Biol 1530:319–36.
  • Fu B, Dang M, Tao J, et al. (2020). Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy. J Colloid Interface Sci 570:197–204.
  • Gao L, Yu J, Liu Y, et al. (2018). Tumor-penetrating peptide conjugated and doxorubicin loaded T1–T2 dual mode MRI contrast agents nanoparticles for tumor theranostics. Theranostics 8:92–108.
  • Gao Y, Chen K, Ma J, Gao F. (2014). Cerium oxide nanoparticles in cancer. Onco Targets Ther 7:835–40.
  • Grieger K, Jones JL, Hansen SF, et al. (2019). Best practices from nano-risk analysis relevant for other emerging technologies. Nat Nanotechnol 14:998–1001.
  • He Y, Huang Y, Huang Z, et al. (2017). Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release 264:76–88.
  • Hossen S, Hossain MK, Basher MK, et al. (2019). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18.
  • Huang C-H, Chuang T-J, Ke C-J, Yao C-H. (2020). Doxorubicin–gelatin/Fe3O4–alginate dual-layer magnetic nanoparticles as targeted anticancer drug delivery vehicles. Polymers 12:1747.
  • Igaz N, Szőke K, Kovács D, et al. (2020). Synergistic radiosensitization by gold nanoparticles and the histone deacetylase inhibitor SAHA in 2D and 3D cancer cell cultures. Nanomaterials 10:158.
  • Ikram M, Javed B, Hassan SWU, et al. (2021). Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches. Nanomedicine 16:1429–46.
  • Jain N, Jain P, Rajput D, Patil UK. (2021). Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst Lett 9:1–24.
  • Jeon M, Lin G, Stephen ZR, et al. (2019). Paclitaxel-loaded iron oxide nanoparticles for targeted breast cancer therapy. Adv Ther 2:1900081.
  • Jeyaraj M, Gurunathan S, Qasim M, et al. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 9:1719.
  • Joh DY, Sun L, Stangl M, et al. (2013). Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLOS One 8:e62425.
  • Jose J, Kumar R, Harilal S, et al. (2020). Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ Sci Pollut Res Int 27:19214–25.
  • Joshi P, Chakraborti S, Ramirez-Vick JE, et al. (2012). The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B Biointerfaces 95:195–200.
  • Joshy KS, Augustine R, Mayeen A, et al. (2020). NiFe2O4/poly(ethylene glycol)/lipid–polymer hybrid nanoparticles for anti-cancer drug delivery. New J Chem 44:18162–72.
  • Kalpana VN, Rajeswari VD. (2018). A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl 2018:3569758.
  • Kankala RK, Liu CG, Yang DY, et al. (2020). Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem Eng J 383:123138.
  • Kgosiemang IK, Lefojane R, Direko P, et al. (2020). Green synthesis of magnesium and cobalt oxide nanoparticles using Euphorbia tirucalli: characterization and potential application for breast cancer inhibition. Inorg Nano-Metal Chem 50:1070–80.
  • Levard C, Hotze EM, Lowry GV, Brown JGE. (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–14.
  • Liao C, Jin Y, Li Y, Tjong SC. (2020). Interactions of zinc oxide nanostructures with mammalian cells: cytotoxicity and photocatalytic toxicity. Int J Mol Sci 21:6305.
  • Liu J, Wu T, Lu X, et al. (2019). A self-assembled platform based on branched DNA for sgRNA/Cas9/antisense delivery. J Am Chem Soc 141:19032–7.
  • Lok C-N, Zou T, Zhang J-J, et al. (2014). Controlled-release systems for metal-based nanomedicine: encapsulated/self-assembled nanoparticles of anticancer gold(III)/platinum(II) complexes and antimicrobial silver nanoparticles. Adv Mater 26:5550–7.
  • Longo TA, Gopalakrishna A, Tsivian M, et al. (2016). A systematic review of regional hyperthermia therapy in bladder cancer. Int J Hyperthermia 32:381–9.
  • Ma X, Wang Y, Liu X-L, et al. (2019). Fe3O4–Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. Nanoscale Horiz 4:1450–9.
  • Mangalampalli B, Dumala N, Grover P. (2019). Toxicity assessment of magnesium oxide nano and microparticles on cancer and non-cancer cell lines. Nucleus 62:227–41.
  • Mattiuzzi C, Lippi G. (2019). Current cancer epidemiology. J Epidemiol Glob Health 9:217.
  • Medici S, Peana M, Pelucelli A, Zoroddu MA. (2021). An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 76:17–26.
  • Mochida Y, Cabral H, Kataoka K. (2017). Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opin Drug Deliv 14:1423–38.
  • Mohanty RK, Thennarasu S, Mandal AB. (2014). Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity. Colloids Surf B Biointerfaces 114:138–43.
  • Muhammad N, Zhao H, Song W, et al. (2021). Silver nanoparticles functionalized paclitaxel nanocrystals enhance overall anti-cancer effect on human cancer cells. Nanotechnology 32:85105.
  • Muhammad Z, Raza A, Ghafoor S, et al. (2016). PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur J Pharm Sci 91:251–5.
  • Najahi-Missaoui W, Arnold RD, Cummings BS. (2021). Safe nanoparticles: are we there yet? Int J Mol Sci 22:385.
  • Pan UN, Khandelia R, Sanpui P, et al. (2017). Protein-based multifunctional nanocarriers for imaging, photothermal therapy, and anticancer drug delivery. ACS Appl Mater Interfaces 9:19495–501.
  • Pang Y, Su L, Fu Y, et al. (2021). Inhibition of furin by bone targeting superparamagnetic iron oxide nanoparticles alleviated breast cancer bone metastasis. Bioact Mater 6:712–20.
  • Patade SR, Andhare DD, Somvanshi SB, et al. (2020). Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram Int 46:25576–83.
  • Patel P, Umapathy D, Manivannan S, et al. (2021). A doxorubicin–platinum conjugate system: impacts on PI3K/AKT actuation and apoptosis in breast cancer cells. RSC Adv 11:4818–28.
  • Perera WPTD, Dissanayake RK, Ranatunga UI, et al. (2020). Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv 10:30785–95.
  • Pissuwan D, Valenzuela SM, Cortie MB. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62–7.
  • Prasad PR, Kanchi S, Naidoo EB. (2016). In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: one-pot green approach. J Photochem Photobiol B 161:375–82.
  • Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. (2018). Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm 539:104–11.
  • Ramalingam V, Raja S, Harshavardhan M. (2020). In situ one-step synthesis of polymer-functionalized palladium nanoparticles: an efficient anticancer agent against breast cancer. Dalton Trans 49:3510–8.
  • Rayapa Reddy T. (2017). Green synthesis, morphological and optical studies of CuO nanoparticles. J Mol Struct 1150:553–7.
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–16.
  • Richardson D, Cardis E, Daniels RD, et al. (2018). Site-specific solid cancer mortality after exposure to ionizing radiation: a cohort study of workers (INWORKS). Epidemiology 29:31–40.
  • Rivas-Domínguez A, Pastor N, Martínez-López L, et al. (2021). The role of DNA damage response in dysbiosis-induced colorectal cancer. Cells 10:1934.
  • Sabouri Z, Akbari A, Hosseini HA, et al. (2021). Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem Lett Rev 14:402–12.
  • Schuemann J, Bagley AF, Berbeco R, et al. (2020). Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 65:21RM02.
  • Sears J, Swanner J, Fahrenholtz CD, et al. (2021). Combined photothermal and ionizing radiation sensitization of triple-negative breast cancer using triangular silver nanoparticles. Int J Nanomedicine 16:851–65.
  • Singhal S, Nie S, Wang MD. (2010). Nanotechnology applications in surgical oncology. Annu Rev Med 61:359–73.
  • Sivakumar P, Lee M, Kim Y-S, Shim MS. (2018). Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J Mater Chem B 6:4852–71.
  • Skoetz N, Will A, Monsef I, et al. (2017). Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavourable or advanced stage Hodgkin lymphoma. Cochrane Database Syst Rev 5:CD007941.
  • Solairaj D, Rameshthangam P, Arunachalam G. (2017). Anticancer activity of silver and copper embedded chitin nanocomposites against human breast cancer (MCF-7) cells. Int J Biol Macromol 105:608–19.
  • Sondi I, Salopek-Sondi B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–82.
  • Song G, Cheng L, Chao Y, et al. (2017). Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater 29:1700996.
  • Sriram MI, Kanth SBM, Kalishwaralal K, Gurunathan S. (2010). Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 5:753–62.
  • Sung H, Ferlay J, Siegel RL, et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–49.
  • Thambiraj S, Shruthi S, Vijayalakshmi R, Ravi Shankaran D. (2019). Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery. Cancer Treat Res Commun 21:100157.
  • Tolkaeva M, Mishra KP, Evstratova E, et al. (2021). Synergistic interaction of heavy metal salts with hyperthermia or ionizing radiation. J Radiat Cancer Res 12:23–6.
  • Umapathi A, Navya PN, Madhyastha H, et al. (2020). Curcumin and isonicotinic acid hydrazide functionalized gold nanoparticles for selective anticancer action. Colloids Surf A Physicochem Eng Asp 607:125484.
  • Vijayakumar TS, Mahboob S, Bupesh G, et al. (2020). Facile synthesis and biophysical characterization of egg albumen-wrapped zinc oxide nanoparticles: a potential drug delivery vehicles for anticancer therapy. J Drug Deliv Sci Technol 60:102015.
  • Wang AZ, Langer R, Farokhzad OC. (2012). Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–98.
  • Wang Y, Chinnathambi A, Nasif O, Alharbi SA. (2021). Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract. Arab J Chem 14:103081.
  • Wason MS, Lu H, Yu L, et al. (2018). Cerium oxide nanoparticles sensitize pancreatic cancer to radiation therapy through oxidative activation of the JNK apoptotic pathway. Cancers 10:303.
  • Wust P, Hildebrandt B, Sreenivasa G, et al. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–97.
  • Yan L, Shen J, Wang J, et al. (2020). Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose Response 18:1559325820936161.
  • Yu MK, Jeong YY, Park J, et al. (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47:5362–5.
  • Zeng X, Sun J, Li S, et al. (2020). Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nat Commun 11:1–12.
  • Zhang C, Liu Z, Zhang Y, et al. (2020). “Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis 11:183.
  • Zhang Y, Li M, Gao X, et al. (2019). Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 12:1–13.
  • Zhao Y, Jia R, Liu Y, et al. (2021). Specific photothermal killing of cancer cells by RNase-conjugated glyco-gold nanoparticles. Mater Today Commun 28:102640.
  • Zhen Z, Tang W, Chen H, et al. (2013). RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7:4830–7.