2,633
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Predicting transdermal fentanyl delivery using physics-based simulations for tailored therapy based on the age

, &
Pages 950-969 | Received 06 Jan 2022, Accepted 02 Mar 2022, Published online: 23 Mar 2022

References

  • Algera MH, Kamp J, van der Schrier R, et al. (2019). Opioid-induced respiratory depression in humans: a review of pharmacokinetic-pharmacodynamic modelling of reversal. Br J Anaesth 122:e168–e179.
  • Andresen T, Upton RN, Foster DJR, et al. (2011). Pharmacokinetic/pharmacodynamic relationships of transdermal buprenorphine and fentanyl in experimental human pain models. Basic Clin Pharmacol Toxicol 108:274–84.
  • Anissimov YG, Jepps OG, Dancik Y, Roberts MS. (2013). Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Adv Drug Deliv Rev 65:169–90.
  • Berner B, John VA. (1994). Pharmacokinetic characterisation of transdermal delivery systems. Clin Pharmacokinet 26:121–34.
  • Bjorkman S, Wada RD, Stanski D. (1998). Application of physiologic models to predict the influence of changes in body composition and blood flows on the pharmacokinetics of fentanyl and alfentanil in patients. Anesthesiology 88:657–67.
  • Björkman S. (2003). Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J Pharmacokinet Pharmacodyn 30:285–307.
  • Boireau-Adamezyk E, Baillet-Guffroy A, Stamatas GN. (2014). Age-dependent changes in stratum corneum barrier function. Skin Res Technol 20:409–15.
  • Breitbart W, Chandler S, Eagel B. (2000). An alternative algorithm for dosing transdermal fentanyl for cancer-related pain. Oncology 14:695–705.
  • Caraceni A, Hanks G, Kaasa S. (2012). Use of opioid analgesics in the treatment of cancer pain: evidence-based recommendations from the EAPC. Lancet Oncol 13:58–68.
  • Casey M, Wintergerste T. (2000). Special interst group on “quality and trust in industrial CFD” best practice guidelines, First edit. ercoftac: European Research Community on Flow Turbulence and Combustion 2000.
  • Chaves C, Remiao F, Cisternino S, Decleves X. (2017). Opioids and the blood-brain barrier: a dynamic interaction with consequences on drug disposition in brain. Curr Neuropharmacol 15:1156–73.
  • Chen J, Jiang QD, Chai YP, et al. (2016). Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules 21:1709–22.
  • Chien YW, Lin S. (2007). Drug delivery: controlled release. In Encyclopedia of Pharmaceutical Technology, Third Edit., J. Swarbrick, Ed. New York: Informa Healthcare, p. 2092.
  • Corral-Acero J, Margara F, Marciniak M, et al. (2020). The 'Digital Twin' to enable the vision of precision cardiology. Eur Heart J 41:4556–64.
  • Defraeye T, Shrivastava C, Berry T, et al. (2021). Digital twins are coming: Will we need them in supply chains of fresh horticultural produce? Trends in Food Science & Technology 109:245–58.
  • Defraeye T, Bahrami F, Ding L, et al. (2020). Predicting transdermal fentanyl delivery using mechanistic simulations for tailored therapy. Front Pharmacol 11:1487.
  • Defraeye T, Bahrami F, Rossi RM. (2021). Inverse mechanistic modeling of transdermal drug delivery for fast identification of optimal model parameters. Front Pharmacol 12:442.
  • Dequidt J, Courtecuisse H, Comas O, et al. (2013). Computer-based training system for cataract surgery. Simulation 89:1421–35.
  • Encinas E, Calvo R, Lukas JC, et al. (2013). A predictive pharmacokinetic/pharmacodynamic model of fentanyl for analgesia/sedation in neonates based on a semi-physiologic approach. Paediatr Drugs 15:247–57.
  • FDA. (2016). Reporting of Computational Modeling Studies in Medical Device Submissions – Guidance for Industry and Food and Drug Administration Staff.
  • Feng Y, Chen X, Zhao J. (2018). Create the individualized digital twin for noninvasive precise pulmonary healthcare. Significances Bioeng Biosci 1.
  • Feng Y, Zhao J, Kleinstreuer C, et al. (2018). An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. J Aerosol Sci 123:185–207.
  • Geist MJP, Ziesenitz VC, Bardenheuer HJ, et al. (2019). Minor contribution of cytochrome P450 3A activity on fentanyl exposure in palliative care cancer patients. Sci Rep 9:6–11.
  • Grond S, Radbruch L, Lehmann KA. (2000). Clinical pharmacokinetics of transdermal opioids: focus on transdermal fentanyl. Clin Pharmacokinet 38:59–89.
  • Gupta R, Rai B. (2018). In-silico design of nanoparticles for transdermal drug delivery application. Nanoscale 10:4940–51.
  • Heikkinen EM, Voipio H-M, Laaksonen S, et al. (2015). Fentanyl pharmacokinetics in pregnant sheep after intravenous and transdermal administration to the ewe. Basic Clin Pharmacol Toxicol 117:156–63.
  • Hill R, Santhakumar R, Henderson G, et al. (2020). Fentanyl depression of respiration: comparison with heroin and morphine. Br J Pharmacol 177:254–65.
  • Jeal W, Benfield P. (1997). Transdermal fentanyl. A review of its pharmacological properties and therapeutic efficacy in pain control. Drugs 53:109–38.
  • Karin Homber JH, Kong J, Lee S. (2008). The effects of applied local heat on transdermal drug delivery systems.
  • Kuip EJM, Oldenmenger WH, Visser-Thijs MF, et al. (2018). Influence of aprepitant and localization of the patch on fentanyl exposure in patients with cancer using transdermal fentanyl. Oncotarget 9:18269–76.
  • Kuip EJM, Zandvliet ML, Koolen SLW, et al. (2017). A review of factors explaining variability in fentanyl pharmacokinetics; focus on implications for cancer patients. Br J Clin Pharmacol 83:294–313.
  • Lennernäs B, Hedner T, Holmberg M, et al. (2005). Pharmacokinetics and tolerability of different doses of fentanyl following sublingual administration of a rapidly dissolving tablet to cancer patients: a new approach to treatment of incident pain. Br J Clin Pharmacol 59:249–53.
  • Li J, Yan K, Hou L, et al. (2017). An algorithm and R program for fitting and simulation of pharmacokinetic and pharmacodynamic data. Eur J Drug Metab Pharmacokinet 42:499–518.
  • Lundborg M, Wennberg CL, Narangifard A, et al. (2018). Predicting drug permeability through skin using molecular dynamics simulation. J Control Release 283:269–79.
  • Macintyre PE, Jarvis DA. (1996). Age is the best predictor of postoperative morphine requirements. Pain 64:357–64.
  • Madden JC, Pawar G, Cronin MTD, et al. (2019). In silico resources to assist in the development and evaluation of physiologically-based kinetic models. Comput. Toxicol 11:33–49.
  • Manitz R, Lucht W, Strehmel K, et al. (1998). On mathematical modeling of dermal and transdermal drug delivery. J Pharm Sci 87:873–9.
  • Marier JF, Lor M, Potvin D, et al. (2006). Pharmacokinetics, tolerability, and performance of a novel matrix transdermal delivery system of fentanyl relative to the commercially available reservoir formulation in healthy subjects. J Clin Pharmacol 46:642–53.
  • Miller RS, Peterson GM, McLean S, Möller C. (1997). Effect of cardiopulmonary bypass on the plasma concentrations of fentanyl and alcuronium. J Clin Pharm Ther 22:197–205.
  • Muijsers RBR, Wagstaff AJ. (2001). Transdermal fentanyl: an updated review of its pharmacological properties and therapeutic efficacy in chronic cancer pain control. Drugs 61:2289–307.
  • Naegel A, Heisig M, Wittum G. (2013). Detailed modeling of skin penetration-an overview. Adv Drug Deliv Rev 65:191–207.
  • Nelson L, Schwaner R. (2009). Transdermal fentanyl: pharmacology and toxicology. J Med Toxicol 5:230–41.
  • Obara S, Egan TD. (2013). Pharmacokinetic and pharmacodynamic principles for intravenous anesthetics. Second Edi. Elsevier Inc.
  • Olkkola KT, Palkama VJ, Neuvonen PJ. (1999). Ritonavir’ s role in reducing fentanyl clearance and prolonging its half-life. The Journal of the American Society of Anesthesiologists 91:681–685.
  • Orsini JA, Moate PJ, Kuersten K, et al. (2006). Pharmacokinetics of fentanyl delivered transdermally in healthy adult horses-variability among horses and its clinical implications. J Vet Pharmacol Ther 29:539–46.
  • Pan S, Duffull SB. (2019). Automated proper lumping for simplification of linear physiologically based pharmacokinetic systems. J Pharmacokinet Pharmacodyn 46:361–70.
  • Paut O, Camboulives J, Viard L, et al. (2000). Pharmacokinetics of transdermal fentanyl in the peri-operative period in young children. Anaesthesia 55:1202–7.
  • Ramos-Matos CF, Lopez-Ojeda W. (2017). Fentanyl. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
  • Rees WD. (1990). clinical oncology opioid needs of terminal care patients: variations with age and primary site. Clin Oncol 2:79–83.
  • Rim JE, Pinsky PM, Van Osdol WW. (2005). Finite element modeling of coupled diffusion with partitioning in transdermal drug delivery. Ann Biomed Eng 33:1422–38.
  • Robert L, Robert A. (2009). Physiologie du vieillissement cutane. Pathologie Biologie 57:336–341.
  • Ruan J, Wan X, Quan P, et al. (2019). Investigation of effect of isopropyl palmitate on drug release from transdermal patch and molecular dynamics study. AAPS PharmSciTech 20:1–12.
  • Sandler AN, Stringer D, Panos L, et al. (1992). A randomized, double-blind comparison of lumbar epidural and intravenous fentanyl infusions for postthoracotomy pain relief. Analgesic, pharmacokinetic, and respiratory effects. Anesthesiology 77:626–34.
  • Schulz M, Schmoldt A. (2003). Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 58:447–74.
  • Scott JC, Stanski DR. (1987). Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 240:159–66.
  • Serlin RC, Mendoza TR, Nakamura Y, et al. (1995). When is cancer pain mild, moderate or severe? Grading pain severity by its interference with function. Pain 61:277–84.
  • Sinisi S, Alimguzhin V, Mancini T.( 2020). “Systems biology Complete populations of virtual patients for in silico clinical trials,” vol. 36, pp. 5465–5472.
  • Thompson JP, Bower S, Liddle AM, Rowbotham DJ. (1998). Perioperative pharmacokinetics of transdermal fentanyl in elderly and young adult patients. Br J Anaesth 81:152–4.
  • Upton RN, Foster DJR, Abuhelwa AY. (2016). An introduction to physiologically-based pharmacokinetic models. Paediatr Anaesth 26:1036–46.
  • US Food and Drug Administration, “Duragesic Label”. (2005).
  • Van der Paal J, Fridman G, Bogaerts A. (2019). Ceramide cross-linking leads to pore formation: potential mechanism behind CAP enhancement of transdermal drug delivery. Plasma Process. Polym 16:1–10.
  • Walicka A, Iwanowska-Chomiak B. (2018). Drug diffusion transport through human skin. Int J Appl Mech Eng 23:977–88.
  • Weiser JR, Saltzman WM. (2014). Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–73.
  • Woodhouse A, Mather LE. (1997). The influence of age upon opioid analgesic use in the patient-controlled analgesia (PCA) environment. Anaesthesia 52:949–55.
  • Wright DFB, Winter HR, Duffull SB. (2011). Understanding the time course of pharmacological effect: a PKPD approach. Br J Clin Pharmacol 71:815–23.
  • Yang D, Wan X, Quan P, et al. (2018). The role of carboxyl group of pressure sensitive adhesive in controlled release of propranolol in transdermal patch: quantitative determination of ionic interaction and molecular mechanism characterization. Eur J Pharm Sci 115:330–8.
  • Yassen A, Olofsen E, Kan J, et al. (2008). Pharmacokinetic-pharmacodynamic modeling of the effectiveness and safety of buprenorphine and fentanyl in rats. Pharm Res 25:183–93.
  • Yassen A, Olofsen E, Romberg R, et al. (2007). Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther 81:50–8.