3,208
Views
30
CrossRef citations to date
0
Altmetric
Research Articles

Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment

, , , , &
Pages 970-985 | Received 27 Jan 2022, Accepted 07 Mar 2022, Published online: 28 Mar 2022

References

  • Altmeyer C, Karam TK, Khalil NM, Mainardes RM. (2016). Tamoxifen-loaded poly(l-lactide) nanoparticles: development, characterization and in vitro evaluation of cytotoxicity. Mater Sci Eng C Mater Biol Appl 60:135–42.
  • Behroozi F, Abdkhodaie MJ, Abandansari HS, et al. (2018). Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomater 76:239–56.
  • Bray F, Ferlay J, Soerjomataram I, et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424.
  • Cagel M, Tesan FC, Bernabeu E, et al. (2017). Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm 113:211–28.
  • Cai X, Bao L, Dai X, et al. (2015). Quercetin protects RAW264.7 macrophages from glucosamine-induced apoptosis and lipid accumulation via the endoplasmic reticulum stress pathway. Mol Med Rep 12:7545–53.
  • Cao HH, Tse AK, Kwan HY, et al. (2014). Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem Pharmacol 87:424–34.
  • Chen D, Lin X, Zhang C, et al. (2018). Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway. Cell Death Dis 9:123.
  • Chuang CH, Yeh CL, Yeh SL, et al. (2016). Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J Nutr Biochem 33:45–53.
  • Cincin ZB, Unlu M, Kiran B, et al. (2014). Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res 45:445–54.
  • Dabeek WM, Marra MV. (2019). Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11:2288.
  • de Freitas AGO, Trindade SG, Muraro PIR, et al. (2013). Controlled one-pot synthesis of polystyrene-block-polycaprolactone copolymers by simultaneous RAFT and ROP. Macromol Chem Phys 214:2336–44.
  • Fang J, Nakamura H, Maeda H. (2011). The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–51.
  • Gaucher G, Dufresne MH, Sant VP, et al. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–88.
  • Guo H, Ding H, Tang X, et al. (2021). Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer 12:1415–22.
  • Guo Y, Zhang P, Zhao Q, et al. (2016). Reduction-sensitive polymeric micelles based on docetaxel-polymer conjugates via disulfide linker for efficient cancer therapy. Macromol Biosci 16:420–31.
  • Hanahan D, Weinberg RA. (2011). Hallmarks of cancer: the next generation. Cell 144:646–74.
  • Hirvonen T, Virtamo J, Korhonen P, et al. (2001). Flavonol and flavone intake and the risk of cancer in male smokers (Finland). Cancer Causes Control 12:789–96.
  • Hu K, Miao L, Goodwin TJ, et al. (2017). Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano 11:4916–25.
  • Jalal SI, Ademuyiwa FO, Hanna NH. (2009). The role of maintenance chemotherapy in advanced nonsmall cell lung cancer. Curr Opin Oncol 21:110–5.
  • Jiang W, Huang Y, Han N, et al. (2016). Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord 54:592–6.
  • Jin Y, Wu Z, Li C, et al. (2018). Optimization of weight ratio for DSPE-PEG/TPGS hybrid micelles to improve drug retention and tumor penetration. Pharm Res 35:13.
  • Kedhari Sundaram M, Raina R, Afroze N, et al. (2019). Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci Rep 39:BSR20190720.
  • Khan H, Ullah H, Martorell M, et al. (2021). Flavonoids nanoparticles in cancer: treatment, prevention and clinical prospects. Semin Cancer Biol 69:200–11.
  • Klimaszewska-Wiśniewska A, Hałas-Wiśniewska M, Izdebska M, et al. (2017). Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem 119:99–112.
  • Kris MG, Johnson BE, Berry LD, et al. (2014). Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311:1998–2006.
  • Kulkarni SA, Feng SS. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30:2512–22.
  • Kumar A, Malik AK, Tewary DK. (2009). A new method for determination of myricetin and quercetin using solid phase microextraction-high performance liquid chromatography-ultra violet/visible system in grapes, vegetables and red wine samples. Anal Chim Acta 631:177–81.
  • Lee SH, Lee EJ, Min KH, et al. (2015). Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clin Lung Cancer 16:e235–e43.
  • Li J, Mao H, Kawazoe N, Chen G. (2017). Insight into the interactions between nanoparticles and cells. Biomater Sci 5:173–89.
  • Li Q, Zhao Z, Qin X, et al. (2021a). A checkpoint-regulatable immune niche created by injectable hydrogel for tumor therapy. Adv Funct Mater 31:2104630.
  • Li Q, Zhou Y, He W, et al. (2021b). Platelet-armored nanoplatform to harmonize Janus-faced IFN-γ against tumor recurrence and metastasis. J Control Release 338:33–45.
  • Liao ZY, Xia YM, Zuo JM, et al. (2021). Metal-organic framework modified MoS2 nanozyme for synergetic combating drug-resistant bacterial infections via photothermal effect and photodynamic modulated peroxidase-mimic activity. Adv Healthc Mater 11:e2101698.
  • Liu J, Yu H, Ning X. (2006). Effect of quercetin on chronic enhancement of spatial learning and memory of mice. Sci China C Life Sci 49:583–90.
  • Lou G, Liu Y, Wu S, et al. (2015). The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis. Cell Physiol Biochem 35:2192–202.
  • Maiti S, Park N, Han JH, et al. (2013). Gemcitabine–coumarin–biotin conjugates: a target specific theranostic anticancer prodrug. J Am Chem Soc 135:4567–72.
  • Mu CF, Balakrishnan P, Cui FD, et al. (2010). The effects of mixed MPEG-PLA/Pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 31:2371–9.
  • Mukherjee A, Khuda-Bukhsh AR. (2015). Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J Pharmacopunct 18:19–26.
  • Nair P, Malhotra A, Dhawan DK. (2015). Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Mol Cell Biochem 400:51–6.
  • Peng H, Chen B, Huang W, et al. (2017). Reprogramming tumor-associated macrophages to reverse EGFRT790M resistance by dual-targeting codelivery of gefitinib/vorinostat. Nano Lett 17:7684–90.
  • Petzetakis N, Robin MP, Patterson JP, et al. (2013). Hollow block copolymer nanoparticles through a spontaneous one-step structural reorganization. ACS Nano 7:1120–8.
  • Pratheeshkumar P, Son YO, Budhraja A, et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLOS One 7:e52279.
  • Quintero-Fabian S, Arreola R, Becerril-Villanueva E, et al. (2019). Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370.
  • Senft C, Polacin M, Priester M, et al. (2010). The nontoxic natural compound curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas. BMC Cancer 10:491.
  • Tang B, Peng Y, Yue Q, et al. (2020). Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem 193:112204.
  • Teekaraman D, Elayapillai SP, Viswanathan MP, Jagadeesan A. (2019). Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem Biol Interact 300:91–100.
  • Wang H, Yang Z, He Z, et al. (2019). Self-assembled amphiphilic chitosan nanomicelles to enhance the solubility of quercetin for efficient delivery. Colloids Surf B Biointerfaces 179:519–26.
  • Wang Y, Yu L, Han L, et al. (2007). Difunctional pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337:63–73.
  • Xingyu Z, Peijie M, Dan P, et al. (2016). Quercetin suppresses lung cancer growth by targeting aurora B kinase. Cancer Med 5:3156–65.
  • Xu H, Yang P, Ma H, et al. (2016). Amphiphilic block copolymers-based mixed micelles for noninvasive drug delivery. Drug Deliv 23:3063–71.
  • Yan C, Liang N, Li Q, et al. (2019). Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydr Polym 216:129–39.
  • Yoo HS, Park TG. (2001). Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release 70:63–70.
  • Yousuf M, Khan P, Shamsi A, et al. (2020). Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega 5:27480–91.
  • Yu Y, Gaillard S, Phillip JM, et al. (2015). Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell 28:82–96.
  • Zang X, Cheng M, Zhang X, Chen X. (2021). Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct 12:6664–81.
  • Zhang J, Shen L, Li X, et al. (2019). Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano 13:12511–24.
  • Zhang M, Qin X, Zhao Z, et al. (2022). A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy. Nanoscale Horiz 7:198–210.
  • Zhang X, Zang X, Qiao M, et al. (2020). Targeted delivery of dasatinib to deplete tumor-associated macrophages by mannosylated mixed micelles for tumor immunotherapy. ACS Biomater Sci Eng 6:5675–84.
  • Zhao J, Liu J, Wei T, et al. (2016). Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale 8:5126–38.
  • Zheng M, Liu Y, Wang Y, et al. (2019). ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv Mater 31:e1903277.
  • Zhou S, Shang Q, Wang N, et al. (2020). Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: four birds with one stone. J Control Release 328:617–30.