4,290
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Merits and advances of microfluidics in the pharmaceutical field: design technologies and future prospects

, , &
Pages 1549-1570 | Received 28 Feb 2022, Accepted 18 Apr 2022, Published online: 25 May 2022

References

  • Abate AR, Lee D, Do T, et al. (2008). Glass coating for PDMS microfluidic channels by sol-gel methods. Lab Chip 8:1549–8.
  • Abdel-Salam FS, Elkheshen SA, Mahmoud AA, et al. (2020). In-situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: Formulation and biological evaluation in animal model. Int J Pharm 580:119213.
  • Abou-Hassan A, Dufrêche JF, Sandre O, et al. (2009). Fluorescence confocal laser scanning microscopy for pH mapping in a coaxial flow microreactor: application in the synthesis of superparamagnetic nanoparticles. J Phys Chem C 113:18097–105.
  • Adel IM, ElMeligy MF, Abdelrahim MEA, et al. (2021). Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int J Nanomedicine 16:2667–87.
  • Ahmed H, Stokke BT. (2021). Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach. Lab Chip 21:2232–43.
  • Ainslie KM, Desai TA. (2008). Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip 8:1864–78.
  • Akhter KF, Mumin MA, Lui EMK, et al. (2019). Immunoengineering with ginseng polysaccharide nanobiomaterials through oral administration in mice. ACS Biomater Sci Eng 5:2916–25.
  • Akther F, Yakob SB, Nguyen N-T, et al. (2020). Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors 10:182.
  • Al-Ahmady ZS, Donno R, Gennari A, et al. (2019). Enhanced intraliposomal metallic nanoparticle payload capacity using microfluidic-assisted self-assembly. Langmuir 35:13318–31.
  • Albuquerque LJC, Sincari V, Ja Ger A, et al. (2019). Microfluidic-assisted engineering of quasi-monodisperse pH-responsive polymersomes toward advanced platforms for the intracellular delivery of hydrophilic therapeutics. Langmuir 35:8363–72.
  • Alkilani AZ, McCrudden MT, Donnelly RF. (2015). Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7:438–70.
  • Anderluzzi G, Lou G, Su Y, et al. (2019). Scalable manufacturing processes for solid lipid nanoparticles. Pharm Nanotechnol 7:444–59.
  • Anna SL, Bontoux N, Stone HA. (2003). Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–6.
  • Ansari MA, Kim KY, Kim SM. (2018). Numerical and experimental study on mixing performances of simple and vortex micro T-mixers. Micromachines 9:204.
  • Arduino I, Liu Z, Rahikkala A, et al. (2021). Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater 121:566–78.
  • Aşık MD, Kaplan M, Çetin B, et al. (2021). Synthesis of iron oxide core chitosan nanoparticles in a 3D printed microfluidic device. J Nanopart Res 23:1–11.
  • Bains A, Cao Y, Kly S, et al. (2017). Controlling structure and function of polymeric drug delivery nanoparticles using microfluidics. Mol Pharm 14:2595–606.
  • Baret JC. (2012). Surfactants in droplet-based microfluidics. Lab Chip 12:422–33.
  • Bashir M, Bashir S, Khan H. (2018). Deposition of polyacrylic acid films on PDMS substrate in dielectric barrier corona discharge at atmospheric pressure. Surf Interface Anal 50:879–88.
  • Basova EY, Foret F. (2015). Droplet microfluidics in (bio)chemical analysis. Analyst 140:22–38.
  • Beebe DJ, Mensing GA, Walker GM. (2002). Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–86.
  • Belliveau NM, Huft J, Lin PJ, et al. (2012). Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1:e37.
  • Bringer MR, Gerdts CJ, Song H, et al. (2004). Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos Transact A Math Phys Eng Sci 362:1087–104.
  • Brown A, Ma, B. Versteeg R, et al. (2017). Manufacture of verteporfin loaded liposomes using a scalable microfluidic platform. Vancouver, Canada: Precision NanoSystems.
  • Bruno G, Canavese G, Liu X, et al. (2016). The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system. Nanoscale 8:18718–25.
  • Cai S, Shi H, Li G, et al. (2019). 3D-printed concentration-controlled microfluidic chip with diffusion mixing pattern for the synthesis of alginate drug delivery microgels. Nanomaterials 9:1451.
  • Cai G, Xue L, Zhang H, et al. (2017). A review on micromixers. Micromachines 8:274.
  • Capretto L, Cheng W, Hill M, Zhang X. (2011). Micromixing within microfluidic devices. Microfluidics 304:27–68.
  • Carvalho BG, Ceccato BT, Michelon M, et al. (2022). Advanced microfluidic technologies for lipid nano-microsystems from synthesis to biological application. Pharmaceutics 14:141.
  • Cejas CM, Monti F, Truchet M, et al. (2018). Universal diagram for the kinetics of particle deposition in microchannels. Phys Rev E 98:062606.
  • Chango A, Abdennebi-Najar L, Tessier F, et al. (2006). Quantitative methylation-sensitive arbitrarily primed PCR method to determine differential genomic DNA methylation in Down Syndrome. Biochem Biophys Res Commun 349:492–6.
  • Chen G, Liu X, Li S, et al. (2018). A droplet energy harvesting and actuation system for self-powered digital microfluidics. Lab Chip 18:1026–34.
  • Chiesa E, Dorati R, Modena T, et al. (2018). Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. Int J Pharm 536:165–77.
  • Choi CH, Lee H, Weitz DA. (2018). Rapid patterning of PDMS microfluidic device wettability using syringe-vacuum-induced segmented flow in nonplanar geometry. ACS Appl Mater Interfaces 10:3170–4.
  • Chou WL, Lee PY, Yang CL, et al. (2015). Recent advances in applications of droplet microfluidics. Micromachines 6:1249–71.
  • Clark I, Dunne PW, Gomes RL, et al. (2017). Continuous hydrothermal synthesis of Ca2Al-NO3 layered double hydroxides: the impact of reactor temperature, pressure and NaOH concentration on crystal characteristics. J Colloid Interface Sci 504:492–9.
  • Cui F, Jafarishad H, Zhou Z, et al. (2020). Batch fabrication of electrochemical sensors on a glycol-modified polyethylene terephthalate-based microfluidic device. Biosens Bioelectron 167:112521.
  • Damiati S, Kompella U, Damiati S, et al. (2018). Microfluidic devices for drug delivery systems and drug screening. Genes 9:103.
  • Danhier F, Ansorena E, Silva JM, et al. (2012). PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–22.
  • De BS, Singh A, Elias A, et al. (2020). An electrochemical neutralization energy-assisted membrane-less microfluidic reactor for water electrolysis. Sustain Energy Fuels 4:6234–44.
  • de Carvalho BG, Taketa TB, Garcia BBM, et al. (2021). Hybrid microgels produced via droplet microfluidics for sustainable delivery of hydrophobic and hydrophilic model nanocarriers. Mater Sci Eng C Mater Biol Appl 118:111467.
  • De Kruijff B, Cullis PR, Radda GK. (1976). Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles. Biochim Biophys Acta 436:729–40.
  • Demello AJ. (2006). Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402.
  • Deng B, Ruiter JD, Schroën K. (2019). Application of microfluidics in the production and analysis of food foams. Foods 8:476.
  • Deshmukh AA, Liepmann D, Pisano AP. (2001). Characterization of a micro-mixing, pumping, and valving system. Transducers’ 01 eurosensors XV. Berlin, Germany: Springer, 922–5.
  • Di Trani N, Silvestri A, Bruno G, et al. (2019). Remotely controlled nanofluidic implantable platform for tunable drug delivery. Lab Chip 19:2192–204.
  • Dietzel A. (2016). Microsystems for pharmatechnology. Vol. 1007. Cham, Switzerland: Springer, 978–3.
  • Ding S, Serra CA, Anton N, et al. (2019). Production of dry-state ketoprofen-encapsulated PMMA NPs by coupling micromixer-assisted nanoprecipitation and spray drying. Int J Pharm 558:1–8.
  • Du Y, Zhang Z, Yim CHo, et al. (2010). A simplified design of the staggered herringbone micromixer for practical applications. Biomicrofluidics 4:024105.
  • Duraiswamy S, Khan SA. (2009). Droplet-based microfluidic synthesis of anisotropic metal nanocrystals. Small 5:2828–34.
  • Ehrfeld W, Golbig K, Hessel V, et al. (1999). Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind Eng Chem Res 38:1075–82.
  • Eldeeb AE, Salah S, Mabrouk M, et al. (2022). Dual-drug delivery via zein in situ forming implants augmented with titanium-doped bioactive glass for bone regeneration: preparation, in vitro characterization, and in vivo evaluation. Pharmaceutics 14:274.
  • Elkasabgy NA, Mahmoud AA. (2019). Fabrication strategies of scaffolds for delivering active ingredients for tissue engineering. AAPS PharmSciTech 20:1–18.
  • Endaylalu SA, Tien WH. (2022). A numerical investigation of the mixing performance in a Y-junction microchannel induced by acoustic streaming. Micromachines 13:338.
  • Erbacher C, Bessoth FG, Busch M, et al. (1999). Towards integrated continuous-flow chemical reactors. Microchim Acta 131:19–24.
  • Erdem K, Ahmadi VE, Kosar A, et al. (2020). Differential sorting of microparticles using spiral microchannels with elliptic configurations. Micromachines 11:412.
  • Erfle P, Riewe J, Bunjes H, et al. (2017). Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation. Microfluid Nanofluid 21:179.
  • Erfle P, Riewe J, Bunjes H, et al. (2019). Stabilized production of lipid nanoparticles of tunable size in Taylor flow glass devices with high-surface-quality 3D microchannels. Micromachines 10:220.
  • Farina M, Ballerini A, Torchio G, et al. (2017). Remote magnetic switch off microgate for nanofluidic drug delivery implants. Biomed Microdevices 19:42.
  • Farra R, Sheppard NF, McCabe L, et al. (2012). First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Trans Med 4:122ra21.
  • Feng J, Yuan J, Cho SK. (2015). Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab Chip 15:1554–62.
  • Ferrati S, Fine D, You J, et al. (2013). Leveraging nanochannels for universal, zero-order drug delivery in vivo. J Control Release 172:1011–9.
  • Ferraz M, Nagashima J, Venzac B, et al. (2020). 3D printed mold leachates in PDMS microfluidic devices. Sci Rep 10:1–9.
  • Fick A. (1855). Ueber diffusion. Ann Phys Chem 170:59–86.
  • Fine D, Grattoni A, Goodall R, et al. (2013). Silicon micro- and nanofabrication for medicine . Adv Healthc Mater 2:632–66.
  • Fu Y, Zhou H, Jia C, et al. (2017). A microfluidic chip based on surfactant-doped polydimethylsiloxane (PDMS) in a sandwich configuration for low-cost and robust digital PCR. Sens Actuat B 245:414–22.
  • Fujii T, Sando Y, Higashino K, et al. (2003). A plug and play microfluidic device. Lab Chip 3:193–7.
  • Gao K, Liu J, Fan Y, et al. (2019). Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation. Biomed Microdevices 21:1–7.
  • Gdowski A, Johnson K, Shah S, et al. (2018). Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnol 16:12.
  • Glasgow I, Aubry N. (2003). Enhancement of microfluidic mixing using time pulsing. Lab Chip 3:114–20.
  • Glunde K, Guggino SE, Solaiyappan M, et al. (2003). Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 5:533–45.
  • Gobby D, Angeli P, Gavriilidis A. (2001). Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126–32.
  • Gonidec M, Puigmartí-Luis J. (2018). Continuous-versus segmented-flow microfluidic synthesis in materials science. Crystals 9:12.
  • Günther A, Jensen KF. (2006). Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–503.
  • Gunther A, Jhunjhunwala M, Thalmann M, et al. (2005). Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21:1547–55.
  • Gunther A, Khan SA, Thalmann M, et al. (2004). Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 4:278–86.
  • Habib SM, Amr AS, Hamadneh IM. (2012). Nanoencapsulation of alpha‐linolenic acid with modified emulsion diffusion method. J Am Oil Chem Soc 89:695–703.
  • Hamblin MR, Karimi M. (2020). Biomedical applications of microfluidic devices. Cambridge (MA): Academic Press.
  • Hamdallah SI, Zoqlam R, Erfle P, et al. (2020). Microfluidics for pharmaceutical nanoparticle fabrication: the truth and the myth. Int J Pharm 584:119408.
  • Harrison DJ, Manz A, Fan Z, et al. (1992). Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–32.
  • Hashiba A, Toyooka M, Sato Y, et al. (2020). The use of design of experiments with multiple responses to determine optimal formulations for in vivo hepatic mRNA delivery. J Control Release 327:467–76.
  • He Y, Kim KJ, Chang CH. (2020). Segmented microfluidic flow reactors for nanomaterial synthesis. Nanomaterials 10:1421.
  • Hiltunen J, Liedert C, Hiltunen M, et al. (2018). Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification. Lab Chip 18:1552–9.
  • Hong SH, Patel T, Ip S, et al. (2018). Microfluidic assembly to synthesize dual enzyme/oxidation-responsive polyester-based nanoparticulates with controlled sizes for drug delivery. Langmuir 34:3316–25.
  • Hu X, Yang F, Guo M, et al. (2020). Fabrication of polyimide microfluidic devices by laser ablation based additive manufacturing. Microsyst Technol 26:1573–83.
  • Ingolfsson HI, Andersen OS. (2011). Alcohol's effects on lipid bilayer properties. Biophys J 101:847–55.
  • Interchim Innovations. (2021). KrosFlo hollow fiber ultrafiltration modules. Product data sheet Available at: https://www.interchim.com/ [cited 11 March 2021].
  • Jahangiri F, Hakala T, Jokinen V. (2020). Long-term hydrophilization of polydimethylsiloxane (PDMS) for capillary filling microfluidic chips. Microfluid Nanofluid 24:1–11.
  • Jamalabadi MYA, DaqiqShirazi M, Kosar A, et al. (2017). Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction. Theor Appl Mech Lett 7:243–51.
  • Jung SY, Park JE, Kang TG, et al. (2019). Design optimization for a microfluidic crossflow filtration system incorporating a micromixer. Micromachines 10:836.
  • Kajtez J, Buchmann S, Vasudevan S, et al. (2020). 3D-Printed soft lithography for complex compartmentalized microfluidic neural devices . Adv Sci (Weinh) 7:2001150.
  • Kamel R, El-Wakil NA, Abdelkhalek AA, et al. (2020). Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. Int J Biol Macromol 156:704–16.
  • Kang X, Luo C, Wei Q, et al. (2013). Mass production of highly monodisperse polymeric nanoparticles by parallel flow focusing system. Microfluid Nanofluid 15:337–45.
  • Khan SA, Jensen KF. (2007). Microfluidic synthesis of Titania shells on colloidal silica. Adv Mater 19:2556–60.
  • Khan IU, Serra CA, Anton N, et al. (2015). Production of nanoparticle drug delivery systems with microfluidics tools. Expert Opin Drug Deliv 12:547–62.
  • Khemthongcharoen N, Uawithya P, Chanasakulniyom M, et al. (2021). Polydimethylsiloxane (PDMS) microfluidic modifications for cell-based immunofluorescence assay. J Adhes Sci Technol 35:955–18.
  • Kim J, Cho H, Kim J, et al. (2021). A disposable smart microfluidic platform integrated with on-chip flow sensors. Biosens Bioelectron 176:112897.
  • Kim S, Kim J, Joung YH, et al. (2019). Optimization of selective laser-induced etching (SLE) for fabrication of 3D glass microfluidic device with multi-layer micro channels. Micro and Nano Syst Lett 7:1–7.
  • Kim S, Ozalp EI, Darwish M, et al. (2018). Electrically gated nanoporous membranes for smart molecular flow control. Nanoscale 10:20740–7.
  • Kimura N, Maeki M, Sato Y, et al. (2020). Development of a microfluidic-based post-treatment process for size-controlled lipid nanoparticles and application to siRNA delivery. ACS Appl Mater Interfaces 12:34011–20.
  • Knight JB, Vishwanath A, Brody JP, et al. (1998). Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80:3863–6.
  • Kotz F, Mader M, Dellen N, et al. (2020). Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 11:873.
  • Krishna KS, Li Y, Li S, et al. (2013). Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev 65:1470–95.
  • Kumar V, Prud’homme RK. (2009). Nanoparticle stability: processing pathways for solvent removal. Chem Eng Sci 64:1358–61.
  • Lauri J, Liedert C, Kokkonen A, et al. (2019). Effect of solvent lamination on roll-to-roll hot-embossed PMMA microchannels evaluated by optical coherence tomography. Mater Res Express 6:075333.
  • Lee CY, Chang CL, Wang YN, et al. (2011). Microfluidic mixing: a review. Int J Mol Sci 12:3263–87.
  • Leung AKK, Hafez IM, Baoukina S, et al. (2012). Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J Phys Chem C Nanomater Interfaces 116:18440–50.
  • Leung AKK, Tam YYC, Chen S, et al. (2015). Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem B 119:8698–706.
  • Li J, Carney RP, Liu R, et al. (2018). Microfluidic print-to-synthesis platform for efficient preparation and screening of combinatorial peptide microarrays. Anal Chem 90:5833–40.
  • Lier S, Riese J, Cvetanoska G, et al. (2018). Innovative scaling strategies for a fast development of apparatuses by modular process engineering. Chem Eng Process 123:111–25.
  • Li Y, Lee RJ, Huang X, et al. (2017). Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery. Nanomedicine 13:371–81.
  • Li Y, Motschman JD, Kelly ST, et al. (2020). Injection molded microfluidics for establishing high-density single cell arrays in an open hydrogel format. Anal Chem 92:2794–801.
  • Lin TY, Do T, Kwon P, et al. (2017). 3D printed metal molds for hot embossing plastic microfluidic devices. Lab Chip 17:241–7.
  • Liu R, Chu C‐H, Wang N, et al. (2019). Combinatorial immunophenotyping of cell populations with an electronic antibody microarray. Small 15:1904732.
  • Liu D, Cito S, Zhang Y, et al. (2015). A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv Mater 27:2298–304.
  • Liu RH, Stremler MA, Sharp KV, et al. (2000). Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–7.
  • Löb P, Drese KS, Hessel V, et al. (2004). Steering of liquid mixing speed in interdigital micro mixers–from very fast to deliberately slow mixing. Chem Eng Technol 27:340–5.
  • Long H, Lai C, Chung CK. (2017). Polyethylene glycol coating for hydrophilicity enhancement of polydimethylsiloxane self-driven microfluidic chip. Surf Coat Technol 320:315–9.
  • Lorenz T, Bojko S, Bunjes H, et al. (2018). An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles. Lab Chip 18:627–38.
  • Lu M, Ozcelik A, Grigsby CL, et al. (2016). Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today 11:778–92.
  • Luo C, Fu Q, Li H, et al. (2005). PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles. Lab Chip 5:726–9.
  • Ma X, Li R, Jin Z, et al. (2020). Injection molding and characterization of PMMA-based microfluidic devices. Microsyst Technol 26:1317–24.
  • Macdonald NP, Cabot JM, Smejkal P, et al. (2017). Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal Chem 89:3858–66.
  • Maeki M, Fujishima Y, Sato Y, et al. (2017). Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS One 12:e0187962.
  • Maged A, Mahmoud AA, Salah S, et al. (2020). Spray-dried rosuvastatin nanoparticles for promoting hair growth. AAPS PharmSciTech 21:205.
  • Mahmoodi Z, Mohammadnejad J, Razavi Bazaz S, et al. (2019). A simple coating method of PDMS microchip with PTFE for synthesis of dexamethasone-encapsulated PLGA nanoparticles. Drug Deliv Transl Res 9:707–20.
  • Mahmoodi, L, Bazaz SR, Mohammadnejad J, et al. (2016). Size-tunable alginate nanoparticles synthesis using T-junction microfluidic chip. 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME). IEEE.
  • Mahmoudi Z, Mohammadnejad J, Razavi Bazaz S, et al. (2020). Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels. Carbohydr Polym 229:115551.
  • Manz A, Graber N, Widmer Há. (1990). Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuat B 1:244–8.
  • Marmiroli B, Grenci G, Cacho-Nerin F, et al. (2009). Free jet micromixer to study fast chemical reactions by small angle X-ray scattering. Lab Chip 9:2063–9.
  • Martins JP, Torrieri G, Santos HA. (2018). The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv 15:469–79.
  • Masood F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 60:569–78.
  • Mata A, Fleischman AJ, Roy S. (2005). Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7:281–93.
  • Matellan C, Armando E. (2018). Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 8:1–13.
  • Mathies RA, Huang XC. (1992). Capillary array electrophoresis: an approach to high-speed, high-throughput DNA sequencing. Nature (Lond) 359:167–9.
  • Melzig S, Finke JH, Schilde C, et al. (2019). Fluid mechanics and process design of high-pressure antisolvent precipitation of fenofibrate nanoparticles using a customized microsystem. Chem Eng J 371:554–64.
  • Mengeaud V, Josserand J, Girault HH. (2002). Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74:4279–86.
  • Minakov A, Rudyak V, Dekterev A, et al. (2013). Investigation of slip boundary conditions in the T-shaped microchannel. Int J Heat Fluid Flow 43:161–9.
  • Moradikhah F, Doosti-Telgerd M, Shabani I, et al. (2020). Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells. Life Sci 254:117768.
  • Morikawa Y, Tagami T, Hoshikawa A, et al. (2018). The use of an efficient microfluidic mixing system for generating stabilized polymeric nanoparticles for controlled drug release. Biol Pharm Bull 41:899–907.
  • Mukherjee P, Nebuloni F, Gao H, et al. (2019). Rapid prototyping of soft lithography masters for microfluidic devices using dry film photoresist in a non-cleanroom setting. Micromachines 10:192.
  • Niculescu AG, Chircov C, Bîrcă AC, et al. (2021). Nanomaterials synthesis through microfluidic methods: an updated overview. Nanomaterials 11:864.
  • Niu G, Ruditskiy A, Vara M, et al. (2015). Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem Soc Rev 44:5806–20.
  • Pall Corporation. (2021). Tangential flow filtration. Available at: https://www.pall.com/en/laboratory/tangential-flow-filtration.html [cited 11 March 2021].
  • Pattni BS, Chupin VV, Torchilin VP. (2015). New developments in liposomal drug delivery. Chem Rev 115:10938–66.
  • Paxman J, Hunt B, Hallan D, et al. (2017). Drunken membranes: short-chain alcohols alter fusion of liposomes to planar lipid bilayers. Biophys J 112:121–32.
  • Pessoa AC, Sipoli CC, Lucimara G. (2017). Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles. Lab Chip 17:2281–93.
  • Pol R, Céspedes F, Gabriel D, et al. (2017). Microfluidic lab-on-a-chip platforms for environmental monitoring. Trac Trends Anal Chem 95:62–8.
  • Raghupathi W, Raghupathi V. (2018). An empirical study of chronic diseases in the United States: a visual analytics approach to public health. Int J Environ Res Public Health 15:431.
  • Reynolds O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans Royal Soc Lond 1883: 935–82.
  • Rhee M, Valencia PM, Rodriguez MI, et al. (2011). Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 23:H79–83.
  • Riewe J, Erfle P, Melzig S, et al. (2020). Antisolvent precipitation of lipid nanoparticles in microfluidic systems–A comparative study. Int J Pharm 579:119167.
  • Roces CB, Lou G, Jain N, et al. (2020). Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics 12:1095.
  • Romanov V, Samuel R, Chaharlang M, et al. (2018). FDM 3D printing of high-pressure, heat-resistant, transparent microfluidic devices. Anal Chem 90:10450–6.
  • Ruben B, Elisa M, Leandro L, et al. (2017). Oxygen plasma treatments of polydimethylsiloxane surfaces: effect of the atomic oxygen on capillary flow in the microchannels. Micro Nano Lett 12:754–7.
  • Sabry MN, El-Emam SH, Mansour MH, et al. (2018). Development of an efficient uniflow comb micromixer for biodiesel production at low Reynolds number. Chem Eng Proc-Proc Intensificat 128:162–72.
  • Salafi T, Zeming KK, Zhang Y. (2016). Advancements in microfluidics for nanoparticle separation. Lab Chip 17:11–33.
  • Samae M, Ritmetee P, Chirasatitsin S, et al. (2020). Precise Manufacturing and performance validation of paper-based passive microfluidic micromixers. Int J Precis Eng Manuf 21:499–508.
  • Santini JT, Cima MJ, Langer R. (1999). A controlled-release microchip. Nature 397:335–8.
  • Sato Y, Note Y, Maeki M, et al. (2016). Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. J Control Release 229:48–57.
  • Sato Y, Okabe N, Note Y, et al. (2020). Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles. Acta Biomater 102:341–50.
  • Saxena S, Joshi R. (2020). Microfluidic devices: applications and role of surface wettability in its fabrication. Surface science. London: IntechOpen.
  • Seibt S, Ryan T. (2020). Microfluidics for time-resolved small-angle x-ray scattering. Advances in micro-and nanofluidics. London: IntechOpen.
  • Serrano P, Decanini D, Leroy L, et al. (2018). Multiflagella artificial bacteria for robust microfluidic propulsion and multimodal micromanipulation. Microelectron Eng 195:145–52.
  • Shaegh SAM, Pourmand A, Nabavinia M, et al. (2018). Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sens Actuat B 255:100–9.
  • Shanko ES, van de Burgt Y, Anderson PD, et al. (2019). Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids. Micromachines (Basel) 10:731.
  • Shembekar N, Chaipan C, Utharala R, et al. (2016). Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16:1314–31.
  • Shui L, Eijkel JC, van den Berg A. (2007a). Multiphase flow in micro-and nanochannels. Sens Actuat B 121:263–76.
  • Shui L, Eijkel JC, Van den Berg A. (2007b). Multiphase flow in microfluidic systems -control and applications of droplets and interfaces. Adv Colloid Interface Sci 133:35–49.
  • Shum HC, Kim JW, Weitz DA. (2008). Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9.
  • Siavashy S, Soltani M, Ghorbani-Bidkorbeh F, et al. (2021). Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr Polym 265:118027.
  • Sitanurak J, Fukana N, Wongpakdee T, et al. (2019). T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D-and 3D-microfluidic paper-based analytical devices. Talanta 205:120113.
  • Sittadjody S, Criswell T, Jackson JD, et al. (2021). Regenerative medicine approaches in bioengineering female reproductive tissues. Reprod Sci. 28:1573–1595.
  • Sivasamy J, Che Z, Neng Wong T, et al. (2010). A simple method for evaluating and predicting chaotic advection in microfluidic slugs. Chem Eng Sci 65:5382–91.
  • Soheili S, Mandegar E, Moradikhah F, et al. (2021). Experimental and numerical studies on microfluidic preparation and engineering of chitosan nanoparticles. J Drug Delivery Sci Technol 61:102268.
  • Song H, Ismagilov RF. (2003). Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–9.
  • Stolzenburg P, Lorenz T, Dietzel A, et al. (2018). Microfluidic synthesis of metal oxide nanoparticles via the nonaqueous method. Chem Eng Sci 191:500–10.
  • Streck S, Clulow AJ, Nielsen HM, et al. (2019a). The distribution of cell-penetrating peptides on polymeric nanoparticles prepared using microfluidics and elucidated with small angle X-ray scattering. J Colloid Interface Sci 555:438–48.
  • Streck S, Neumanna H, Nielsen HM, et al. (2019b). Comparison of bulk and microfluidics methods for the formulation of poly-lactic-co-glycolic acid (PLGA) nanoparticles modified with cell-penetrating peptides of different architectures. Int J Pharm X 1:100030.
  • Sudarsan AP, Ugaz VM. (2006). Fluid mixing in planar spiral microchannels. Lab Chip 6:74–82.
  • Sun J, Xianyu Y, Li M, et al. (2013). A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles. Nanoscale 5:5262–5.
  • Terry SC, Jerman JH, Angell JB. (1979). A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26:1880–6.
  • Therriault D, White SR, Lewis JA. (2003). Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–71.
  • Thorsen T, Roberts RW, Arnold FH, et al. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–6.
  • Tice JD, Song H, Lyon AD, et al. (2003). Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19:9127–33.
  • Utada AS, Lorenceau E, Link DR, et al. (2005). Monodisperse double emulsions generated from a microcapillary device. Science 308:537–41.
  • Valencia PM, Basto PA, Zhang L, et al. (2010). Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4:1671–9.
  • Valencia PM, Pridgen EM, Rhee M, et al. (2013). Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 7:10671–80.
  • Van Der Woerd M, Ferree D, Pusey M. (2003). The promise of macromolecular crystallization in microfluidic chips. J Struct Biol 142:180–7.
  • Vasilescu SA, Bazaz SR, Jin D, et al. (2020). 3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation. Appl Mater Today 20:100726.
  • Vasudev A, Kaushik A, Jones K, et al. (2013). Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Microfluid Nanofluid 14:683–702.
  • Vladisavljević GT, Khalid N, Neves MA, et al. (2013). Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 65:1626–63.
  • Vu HTH, Streck S, Hook SM, et al. (2019). Utilization of microfluidics for the preparation of polymeric nanoparticles for the antioxidant rutin: a comparison with bulk production. Pharm Nanotechnol 7:469–83.
  • Wagner J, Köhler J. (2005). Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett 5:685–91.
  • Wang H, Chen B, He M, et al. (2019). Study on uptake of gold nanoparticles by single cells using droplet microfluidic chip-inductively coupled plasma mass spectrometry. Talanta 200:398–407.
  • Wang CT, Hu YC, Hu TY. (2009). Biophysical micromixer. Sensors (Basel) 9:5379–89.
  • Webb C, Forbes N, Roces CB, et al. (2020). Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes. Int J Pharm 582:119266.
  • Woolley AT, Mathies RA. (1994). Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci USA 91:11348–52.
  • Xu J, Zhang S, Machado A, et al. (2017). Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor. Sci Rep 7:1–12.
  • Yang Z, Goto H, Matsumoto M, et al. (2000). Active micromixer for microfluidic systems using lead‐zirconate‐titanate (PZT)‐generated ultrasonic vibration. Electrophoresis 21:116–9.
  • Yang Z, Matsumoto S, Goto H, et al. (2001). Ultrasonic micromixer for microfluidic systems. Sens Actuat A 93:266–72.
  • Yaralioglu GG, Wygant IO, Marentis TC, et al. (2004). Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76:3694–8.
  • Yen BKH, Günther A, Schmidt MA, et al. (2005). A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew Chem Int Ed Engl 44:5447–51.
  • Yeung C, Chen S, King B, et al. (2019). A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics 13:064125.
  • Younis MA, Khalil IA, Elewa YHA, et al. (2021). Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release 331:335–49.
  • Yu Z, Hemminger O, Fan LS. (2007). Experiment and lattice Boltzmann simulation of two-phase gas–liquid flows in microchannels. Chem Eng Sci 62:7172–83.
  • Zhang L, Chen Q, Ma Y, et al. (2020). Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater 3:107–20.
  • Zhang Y, Yesiloz G, Sharahi HJ, et al. (2019). Geomaterial‐functionalized microfluidic devices using a universal surface modification approach. Adv Mater Interfaces 6:1900995.
  • Zhao CX, He L, Qiao SZ, et al. (2011). Nanoparticle synthesis in microreactors. Chem Eng Sci 66:1463–79.
  • Zheng F, Xiao Y, Liu H, et al. (2021). Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv Biol (Weinh) 5:e2000024.
  • Zhigaltsev IV, Belliveau N, Hafez I, et al. (2012). Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 28:3633–40.
  • Zhu J, Wang M, Zhang H, et al. (2020). Effects of hydrophilicity, adhesion work, and fluid flow on biofilm formation of PDMS in microfluidic systems. ACS Appl Bio Mater 3:8386–94.