2,374
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives

, , & ORCID Icon
Pages 1370-1383 | Received 07 Mar 2022, Accepted 18 Apr 2022, Published online: 09 May 2022

References

  • Afzalipour R, Khoei S, Khoee S, et al. (2019). Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater Sci Eng 5:1370–11.
  • Ag Seleci D, Maurer V, Barlas FB, et al. (2021). Transferrin-decorated niosomes with integrated InP/ZnS quantum dots and magnetic iron oxide nanoparticles: dual targeting and imaging of glioma. IJMS 22:4556.
  • Aldape K, Brindle KM, Chesler L, et al. (2019). Challenges to curing primary brain tumours. Nat Rev Clin Oncol 16:509–20.
  • Alemany M, Velasco R, Simó M, et al. (2021). Late effects of cancer treatment: consequences for long-term brain cancer survivors. Neurooncol Pract 8:18–30.
  • Amin J, Sharif M, Yasmin M, et al. (2020). A distinctive approach in brain tumor detection and classification using MRI. Pattern Recog Lett 139:118–27.
  • Bae S, Ma K, Kim TH, et al. (2012). Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 33:1536–46.
  • Banks WA. (2016). From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15:275–92.
  • Bao S, Zheng H, Ye J, et al. (2021). Dual targeting EGFR and STAT3 with erlotinib and alantolactone co-loaded PLGA nanoparticles for pancreatic cancer treatment. Front Pharmacol 12:625084.
  • Barbara R, Belletti D, Pederzoli F, et al. (2017). Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt abeta aggregates. Int J Pharm 526:413–24.
  • Batra N, Ghag I, Babu K, et al. (2021). Reviewing Oncogenes and Proto-Oncogenes. Int J Sci Res Sci Technol 8:458–79.
  • Beik J, Khateri M, Khosravi Z, et al. (2019). Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev 387:299–324.
  • Bellettato CM, Scarpa M. (2018). Possible strategies to cross the blood–brain barrier. Ital J Pediatr 44:127–33.
  • Bian S, Repic M, Guo Z, et al. (2018). Genetically engineered cerebral organoids model brain tumor formation. Nat Methods 15:631–9.
  • Butler HJ, Brennan PM, Cameron JM, et al. (2019). Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer. Nat Commun 10:1–9.
  • Butt AM, Jones HC, Abbott NJ. (1990). Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62.
  • Byeon HJ, Thao LQ, Lee S, et al. (2016). Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release 225:301–13.
  • Cao J, Huang D, Peppas NA. (2020). Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 167:170–88.
  • Carey-Ewend AG, Hagler SB, Bomba HN, et al. (2021). Developing bioinspired three-dimensional models of brain cancer to evaluate tumor-homing neural stem cell therapy. Tissue Eng Part A 27:857–66.
  • Chan AC, Carter PJ. (2010). Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–16.
  • Chen L, Zeng D, Xu N, et al. (2019). Blood-brain barrier- and blood-brain tumor barrier-penetrating peptide-derived targeted therapeutics for glioma and malignant tumor brain metastases. ACS Appl Mater Interfaces 11:41889–97.
  • Cheng Y, Meyers JD, Agnes RS, et al. (2011). Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small 7:2301–6.
  • Coelho‐Santos V, Shih AY. (2020). Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdiscip Rev Dev Biol 9:e363.
  • Coomans MB, van der Linden SD, Gehring K, et al. (2019). Treatment of cognitive deficits in brain tumour patients: current status and future directions. Curr Opin Oncol 31:540–7.
  • Costagliola di Polidoro A, Zambito G, Haeck J, et al. (2021). Theranostic design of angiopep-2 conjugated hyaluronic acid nanoparticles (Thera-ANG-cHANPs) for dual targeting and boosted imaging of glioma cells. Cancers 13:503.
  • Costantino L, Boraschi D. (2012). Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today 17:367–78.
  • Covarrubias G, He F, Raghunathan S, et al. (2019). Effective treatment of cancer metastasis using a dual-ligand nanoparticle. PLOS One 14:e0220474,
  • Cui Y, Sun J, Hao W, et al. (2020). Dual-target peptide-modified erythrocyte membrane-enveloped PLGA nanoparticles for the treatment of glioma. Front Oncol 10:2334.
  • Cui Y, Xu Q, Chow PK-H, et al. (2013). Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 34:8511–20.
  • Cui Y, Zhang M, Zeng F, et al. (2016). Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 8:32159–69.
  • Deng C, Zhang Q, Jia M, et al. (2019). Tumors and their microenvironment dual-targeting chemotherapy with local immune adjuvant therapy for effective antitumor immunity against breast cancer. Adv Sci 6:1801868,
  • Devi P, Saini S, Kim K-H. (2019). The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 141:111158.
  • Di Mauro PP, Cascante A, Brugada Vilà P, et al. (2018). Peptide-functionalized and high drug loaded novel nanoparticles as dual-targeting drug delivery system for modulated and controlled release of paclitaxel to brain glioma. Int J Pharm 553:169–85.
  • Fan Y, Zhou Y, Lu M, et al. (2021). Responsive dual-targeting exosome as a drug carrier for combination cancer immunotherapy. Research 2021:9862876.
  • Fu S, Liang M, Wang Y, et al. (2019). Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces 11:1841–54.
  • Furtado D, Björnmalm M, Ayton S, et al. (2018). Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater 30:1801362.
  • Gajbhiye V, Jain NK. (2011). The treatment of glioblastoma xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials 32:6213–25.
  • Ganipineni LP, Danhier F, Préat V. (2018). Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 281:42–57.
  • Gao H. (2017). Perspectives on dual targeting delivery systems for brain tumors. J Neuroimmune Pharmacol 12:6–16.
  • Gao L, Zhao X, Wang J, et al. (2018). Multiple functionalized carbon quantum dots for targeting glioma and tissue imaging. Opt Mater 75:764–9.
  • Gao S, Tian H, Xing Z, et al. (2016). A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. J Controlled Release 243:357–69.
  • Göppert TM, Müller RH. (2005). Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–87.
  • Groysbeck N, Stoessel A, Donzeau M, et al. (2019). Synthesis and biological evaluation of 2.4 nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma cancer cells via the EGFR. Nanotechnology 30:184005,
  • Gupta M, Lee HJ, Barden CJ, et al. (2019). The Blood-Brain Barrier (BBB) score. J Med Chem 62:9824–36.
  • Harilal S, Jose J, Parambi DGT, et al. (2020). Revisiting the blood-brain barrier: a hard nut to crack in the transportation of drug molecules. Brain Res Bull 160:121–40.
  • Haumann R, Videira JC, Kaspers GJL, et al. (2020). Overview of current drug delivery methods across the blood–brain barrier for the treatment of primary brain tumors. CNS Drugs 34:1121–11.
  • He Q, Liu J, Liang J, et al. (2018). Towards improvements for penetrating the blood–brain barrier—recent progress from a material and pharmaceutical perspective. Cells 7:24.
  • Hervé F, Ghinea N, Scherrmann J-M. (2008). CNS delivery via adsorptive transcytosis. Aaps J 10:455–72.
  • Huang R, Ke W, Liu Y, et al. (2008). The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials 29:238–46.
  • Huang S, Li J, Han L, et al. (2011). Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 32:6832–8.
  • Huang Y-N, Yang L-Y, Greig NH, et al. (2018). Neuroprotective effects of pifithrin-α against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci Rep 8:1–17.
  • Idbaih A, Canney M, Belin L, et al. (2019). Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res 25:3793–801.
  • Jiao X, Yu Y, Meng J, et al. (2019). Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B 9:381–96.
  • Juillerat-Jeanneret L. (2008). The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13:1099–106.
  • Kahalley LS, Douglas Ris M, Mahajan A, et al. (2019). Prospective, longitudinal comparison of neurocognitive change in pediatric brain tumor patients treated with proton radiotherapy versus surgery only. Neuro-oncology 21:809–18.
  • Kamaly N, Yameen B, Wu J, et al. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–63.
  • Karlsson J, Luly KM, Tzeng SY, et al. (2021). Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev 179:113999.
  • Kim HR, Andrieux K, Delomenie C, et al. (2007). Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein lab-on-chip system. Electrophoresis 28:2252–61.
  • Kim JS, Shin DH, Kim J-S. (2018). Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J Control Release 269:245–57.
  • Kobiler D, Lustig S, Gozes Y, et al. (1989). Sodium dodecylsulphate induces a breach in the blood-brain barrier and enables a West Nile virus variant to penetrate into mouse brain. Brain Res 496:314–6.
  • Kontermann R. (2012). Dual targeting strategies with bispecific antibodies. mAbs 4 (2):182–97.
  • Koren E, Apte A, Jani A, et al. (2012). Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160:264–73.
  • Kreuter J. (2013). Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J Microencapsul 30:49–54.
  • Kumar A, et al. (2017). Targeted drug delivery system: current and novel approach. Int J Pharm Med Res 5:448–54.
  • Kumthekar P, Rademaker A, Ko C, et al. (2019). A phase 0 first-in-human study using NU-0129: a gold base Spherical Nucleic Acid (SNA) nanoconjugate targeting BCL2L12 in recurrent glioblastoma patients. J Clin Oncol 37 (15_suppl):3012.
  • Kwon IK, Lee SC, Han B, et al. (2012). Analysis on the current status of targeted drug delivery to tumors. J Control Release 164:108–14.
  • Li C, Chen LLin, Wang Y, et al. (2021). Protein nanoparticle-related osmotic pressure modifies nonselective permeability of the blood–brain barrier by increasing membrane fluidity. Int J Nanomed 16:1663–80.
  • Li X, Tsibouklis J, Weng T, et al. (2017). Nano carriers for drug transport across the blood-brain barrier. J Drug Target 25:17–28.
  • Lien C-F, Molnár E, Toman P, et al. (2012). In vitro assessment of alkylglyceryl-functionalized chitosan nanoparticles as permeating vectors for the blood-brain barrier. Biomacromolecules 13:1067–73.
  • Liu J, Li M, Huang Y, et al. (2021). A nanogel with effective blood-brain barrier penetration ability through passive and active dual-targeting function. J Nanomater 2021:1–11.
  • Lockman PR, Koziara JM, Mumper RJ, et al. (2004). Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–41.
  • Lopez-Bertoni H, Kozielski KL, Rui Y, et al. (2018). Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell regulating miRNAs inhibit glioblastoma growth and prolong survival. Nano Lett 18:4086–94.
  • Lu QR, Qian L, Zhou X. (2019). Developmental origins and oncogenic pathways in malignant brain tumors. Wiley Interdiscip Rev Dev Biol 8:e342.
  • Luo R, Lin M, Fu C, et al. (2021). Calcium pectinate and hyaluronic acid modified lactoferrin nanoparticles loaded rhein with dual-targeting for ulcerative colitis treatment. Carbohydr Polym 263:117998.
  • Luo Z, Jin K, Pang Q, et al. (2017). On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl Mater Interfaces 9:31612–25.
  • Maeda H, Bharate G, Daruwalla J. (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–19.
  • Mäger I, Meyer AH, Li J, et al. (2017). Targeting blood-brain-barrier transcytosis – perspectives for drug delivery. Neuropharmacology 120:4–7.
  • Mao J, Ran D, Xie C, et al. (2017). EGFR/EGFRvIII dual-targeting peptide-mediated drug delivery for enhanced glioma therapy. ACS Appl Mater Interfaces 9:24462–75.
  • Mao S, Sun W, Kissel T. (2010). Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27.
  • Markoutsa E, Pampalakis G, Niarakis A, et al. (2011). Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line. Eur J Pharm Biopharm 77:265–74.
  • Meel Rvd, Vehmeijer LJC, Kok RJ, et al. (2016). Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Intracellular Delivery III Chapter 7:163–200.
  • Mo J, He L, Ma B, et al. (2016). Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier. ACS Appl Mater Interfaces 8:6811–25.
  • Ni W, Li Z, Liu Z, et al. (2019). Dual-targeting nanoparticles: codelivery of curcumin and 5-fluorouracil for synergistic treatment of hepatocarcinoma. J Pharm Sci 108:1284–95.
  • Niu J, Wang L, Yuan M, et al. (2020). Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution. J Drug Delivery Sci Technol 57:101343.
  • Oddo A, Peng B, Tong Z, et al. (2019). Advances in microfluidic blood-brain barrier (BBB) models. Trends Biotechnol 37:1295–314.
  • Pardridge WM. (2007). Drug targeting to the brain. Pharm Res 24:1733–44.
  • Patel NR, Pattni BS, Abouzeid AH, et al. (2013). Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 65:1748–62.
  • Patel NR, Rathi A, Mongayt D, et al. (2011). Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm 416:296–9.
  • Patil YB, Swaminathan SK, Sadhukha T, et al. (2010). The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31:358–65.
  • Pattni BS, Torchilin VP. (2015). Targeted drug delivery systems: Strategies and challenges. In Targeted drug delivery: Concepts and design. Advances in Delivery Science and Technology; Springer International Publishing Chapter 1:3–38.
  • Peiris PM, He F, Covarrubias G, et al. (2018). Precise targeting of cancer metastasis using multi-ligand nanoparticles incorporating four different ligands. Nanoscale 10:6861–71.
  • Peng Y, Zhao Y, Chen Y, et al. (2018). Dual-targeting for brain-specific liposomes drug delivery system: synthesis and preliminary evaluation. Bioorg Med Chem 26:4677–86.
  • Pérez-Herrero E, Fernández-Medarde A. (2015). Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79.
  • Qiao C, Yang J, Shen Q, et al. (2018). Traceable nanoparticles with dual targeting and ROS response for RNAi‐based immunochemotherapy of intracranial glioblastoma treatment. Adv Mater 30:1705054.
  • Qosa H, Miller DS, Pasinelli P, et al. (2015). Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 1628:298–316.
  • Raghavapudi H, Singroul P, Kohila V. (2021). Brain tumor causes, symptoms, diagnosis and radiotherapy treatment. Curr Med Imaging 17:931–42.
  • Rajendra PKM, et al. (2021). An overview of dual targeting nanostructured lipid carriers for the treatment of ovarian cancer. Ind J Pharm Educ Res 55:330–5.
  • Ramalho MJ, Sevin E, Gosselet F, et al. (2018). Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm 545:84–92.
  • Ratnaparkhe M, Wong JKL, Wei P-C, et al. (2018). Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat Commun 9:1–13.
  • Reddy S, Tatiparti K, Sau S, et al. (2021). Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov Today 26:1944–52.
  • Rosenblum D, Joshi N, Tao W, et al. (2018). Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1–12.
  • Ruan S, He Q, Gao H. (2015). Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale 7:9487–96.
  • Ruan S, Yuan M, Zhang L, et al. (2015). Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–35.
  • Sahli F, Courcelle M, Palama T, et al. (2020). Temozolomide, gemcitabine, and decitabine hybrid nanoconjugates: from design to proof-of-concept (PoC) of synergies toward the understanding of drug impact on human glioblastoma cells. J Med Chem 63:7410–21.
  • Sawant RR, Jhaveri AM, Koshkaryev A, et al. (2014). Targeted transferrin-modified polymeric micelles: enhanced efficacy in vitro and in vivo in ovarian carcinoma. Mol Pharm 11:375–81.
  • Sawant RR, Torchilin VP. (2011). Design and synthesis of novel functional lipid-based bioconjugates for drug delivery and other applications. Methods Mol Biol 751:357–78.
  • Simionescu M, Simionescu N. (1991). Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology. Cell Biol Rev 25:1–78.
  • Sindhwani S, Syed AM, Ngai J, et al. (2020). The entry of nanoparticles into solid tumours. Nat Mater 19:566–75.
  • Sonali MKV, et al. (2018). Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics 2:70.
  • Sonar SA, Lal G. (2018). Blood-brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 103:839–53.
  • Sousa F, Dhaliwal HK, Gattacceca F, et al. (2019). Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release 309:37–47.
  • Stenström P, Manzanares D, Zhang Y, et al. (2018). Evaluation of amino-functional polyester dendrimers based on Bis-MPA as nonviral vectors for siRNA delivery. Molecules 23:2028.
  • Sun Z, Yan X, Liu YBo, et al. (2017). Application of dual targeting drug delivery system for the improvement of anti-glioma efficacy of doxorubicin. Oncotarget 8:58823–34.
  • Tandel GS, Biswas M, Kakde OG, et al. (2019). A review on a deep learning perspective in brain cancer classification. Cancers 11:111.
  • Tang W, Fan W, Lau J, et al. (2019). Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 48:2967–3014.
  • Teleanu D, Chircov C, Grumezescu A, et al. (2018). Blood-brain delivery methods using nanotechnology. Pharmaceutics 10:269.
  • Teleanu D, Chircov C, Grumezescu A, et al. (2018). Impact of nanoparticles on brain health: an up to date overview. JCM 7:490.
  • Tewabe A, Abate A, Tamrie M, et al. (2021). Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc 14:1711–24.
  • Tommasini-Ghelfi S, Lee A, Mirkin CA, et al. (2019). Synthesis, physicochemical, and biological evaluation of spherical nucleic acids for RNAi-based therapy in glioblastoma. Methods Mol Biol 1974:371–91.
  • Torchilin V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–5.
  • Torchilin VP. (2007). Targeted pharmaceutical nanocarriers for cancer therapy and imaging. Aaps J 9:E128–E147.
  • Tu L, Luo Z, Wu Y-L, et al. (2021). Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med 18:372–87.
  • Usman M, Farooq M, Wakeel A, et al. (2020). Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778.
  • Vhora I, Patil S, Bhatt P, et al. (2014). Receptor-targeted drug delivery: current perspective and challenges. Ther Deliv 5:1007–24.
  • Vllasaliu D, Exposito-Harris R, Heras A, et al. (2010). Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution. Int J Pharm 400:183–93.
  • Wang H, Liu H, Sun C, et al. (2021). Nanoparticles dual targeting both myeloma cells and cancer-associated fibroblasts simultaneously to improve multiple myeloma treatment. Pharmaceutics 13:274.
  • Wang H, Zhou L, Xie K, et al. (2018). Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 8:3949–63.
  • Warren KE. (2018). Beyond the blood: brain barrier: the importance of central nervous system (CNS) pharmacokinetics for the treatment of CNS tumors, including diffuse intrinsic pontine glioma. Front Oncol 8:239.
  • Weissig V, Pettinger TK, Murdock N. (2014). Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–73.
  • Win KY, Feng S-S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713–22.
  • Xu C, He Z, Lin C, et al. (2020). MiR-30b-5p inhibits proliferation and promotes apoptosis of medulloblastoma cells via targeting MYB proto-oncogene like 2 (MYBL2). J Investig Med 68:1179–85.
  • Xu X, Li J, Han S, et al. (2016). A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration. Eur J Pharm Sci 88:178–90.
  • Yang J, Zhang Q, Liu Y, et al. (2020). Nanoparticle-based co-delivery of siRNA and paclitaxel for dual-targeting of glioblastoma. Nanomedicine 15:1391–409.
  • Yoo J, Park C, Yi G, et al. (2019). Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11:640.
  • Yu W, Zhang L, Wei Q, et al. (2019). O6-methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. Front Oncol 9:1547.
  • Zang X, Zhou J, Zhang X, et al. (2021). Dual-targeting tumor cells and tumor associated macrophages with lipid coated calcium zoledronate for enhanced lung cancer chemoimmunotherapy. Int J Pharm 594:120174.
  • Zeineldin RA, Karar ME, Coburger J, et al. (2020). DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. Int J Comput Assist Radiol Surg 15:909–20.
  • Zhang K, Li J, Xin X, et al. (2021). Dual targeting of cancer cells and MMPs with self-assembly hybrid nanoparticles for combination therapy in combating cancer. Pharmaceutics 13:1990.
  • Zhang S, Li J, Lykotrafitis G, et al. (2009). Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–24.
  • Zhao P, Wang Y, Kang X, et al. (2018). Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem Sci 9:2674–89.
  • Zhu L, Torchilin VP. (2013). Stimulus-responsive nanopreparations for tumor targeting. Integr Biol 5:96–107.
  • Zottel A, Videtič Paska A, Jovčevska I. (2019). Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials 12:1588.