2,809
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Bone tumors effective therapy through functionalized hydrogels: current developments and future expectations

, , , , & ORCID Icon
Pages 1631-1647 | Received 03 Feb 2022, Accepted 01 May 2022, Published online: 25 May 2022

References

  • Agrawal G, Agrawal R. (2018). Stimuli-responsive microgels and microgel-based systems: advances in the exploitation of microgel colloidal properties and their interfacial activity. Polymers 10:1631.
  • Ahmed EM. (2015). Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–21.
  • Akhtar MF, Hanif M, Ranjha NM. (2016). Methods of synthesis of hydrogels … a review. Saudi Pharm J 24:554–9.
  • Ali Gumustas S, Isyar M, Topuk S, et al. (2016). Systematic evaluation of drug-loaded hydrogels for application in osteosarcoma treatment. Curr Pharm Biotechnol 17:866–72.,
  • Amini AA, Nair LS. (2012). Injectable hydrogels for bone and cartilage repair. Biomed Mater 7:024105.
  • Bădilă AE, Rădulescu DM, Niculescu A-G, et al. (2021). Recent advances in the treatment of bone metastases and primary bone tumors: an up-to-date review. Cancers 13:4229.
  • Bai X, Gao M, Syed S, et al. (2018). Bioactive hydrogels for bone regeneration. Bioact Mater 3:401–17.,
  • Balakrishnan B, Joshi N, Banerjee R. (2013). Borate aided Schiff’s base formation yields in situ gelling hydrogels for cartilage regeneration. J Mater Chem B 1:5564–77.
  • Boehme K, Schleicher S, Traub F, et al. (2018). Chondrosarcoma: a rare misfortune in aging human cartilage? The role of stem and progenitor cells in proliferation, malignant degeneration and therapeutic resistance. IJMS 19:311.
  • Brown R, Links M. (1999). Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med 1999:1–21.
  • Buwalda SJ, Boere KWM, Dijkstra PJ, et al. (2014). Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–73.
  • Buwalda SJ, Vermonden T, Hennink WE. (2017). Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18:316–30.
  • Cascone MG, Maltinti S, Barbani N, et al. (1999). Effect of chitosan and dextran on the properties of poly (vinyl alcohol) hydrogels. J Mater Sci Mater Med 10:431–5.
  • Chen G, Roy I, Yang C, et al. (2016). Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116:2826–85.
  • Chen S, Wang Y, Zhang X, et al. (2022). Double-crosslinked bifunctional hydrogels with encapsulated anti-cancer drug for bone tumor cell ablation and bone tissue regeneration. Colloids Surf B Biointerfaces 213:112364.
  • Chen W-J, Jingushi S, Aoyama I, et al. (2004). Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae. J Bone Miner Metab 22:303–9.
  • Chen Y, Ballard N, Bon SA. (2013). Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem Commun 49:1524–1526.
  • Chen Y, Hao Y, Huang Y, et al. (2019). An injectable, near-infrared light-responsive click cross-linked azobenzene hydrogel for breast cancer chemotherapy. J Biomed Nanotechnol 15:1923–36.
  • Chindamo G, Sapino S, Peira E, et al. (2020). Bone diseases: current approach and future perspectives in drug delivery systems for bone targeted therapeutics. Nanomaterials 10:875.
  • Chou AJ, Geller DS, Gorlick R. (2008). Therapy for osteosarcoma. Pediatr Drugs 10:315–27.
  • Cortini M, Baldini N, Avnet S. (2019). New advances in the study of bone tumors: a lesson from the 3D environment. Front Physiol 10:814.
  • Cui Y, Sun J, Hao W, et al. (2020). Dual-target peptide-modified erythrocyte membrane-enveloped PLGA nanoparticles for the treatment of glioma. Front Oncol 10:2334.
  • Culebras M, Barrett A, Pishnamazi M, et al. (2021). Wood-derived hydrogels as a platform for drug-release systems. ACS Sustain Chem Eng 9:2515–22.
  • Culver HR, Steichen SD, Peppas NA. (2016). A closer look at the impact of molecular imprinting on adsorption capacity and selectivity for protein templates. Biomacromolecules 17:4045–4053.
  • Darge HF, Andrgie AT, Hanurry EY, et al. (2019). Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 572:118799.
  • Davis ME, Chen Z, Shin DM. (2010). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanosci Technol Collect Rev Nature J 7:239–50.
  • Di Mauro PP, Cascante A, Brugada Vilà P, et al. (2018). Peptide-functionalized and high drug loaded novel nanoparticles as dual-targeting drug delivery system for modulated and controlled release of paclitaxel to brain glioma. Int J Pharm 553:169–85.
  • Diehl KL, Kolesnichenko IV, Robotham SA, et al. (2016). Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor. Nature Chem 8:968–73.
  • Ding J, Xu W, Zhang Y, et al. (2013). Self-reinforced endocytoses of smart polypeptide nanogels for “on-demand” drug delivery. J Control Release 172:444–55.
  • Elkhoury K, Russell CS, Sanchez‐Gonzalez L, et al. (2019). Soft‐Nanoparticle functionalization of natural hydrogels for tissue engineering applications. Advanced Healthcare Materials 8(18):1900506.
  • Fan D-y, Tian Y, Liu Z-j. (2019). Injectable hydrogels for localized cancer therapy. Front Chem 7:675.
  • Fedorovich NE, Oudshoorn MH, van Geemen D, et al. (2009). The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–53.
  • Ferguson WS, Goorin AM. (2001). Current treatment of osteosarcoma. Cancer Invest 19:292–315.
  • Ferracini R, Martínez Herreros I, Russo A, et al. (2018). Scaffolds as structural tools for bone-targeted drug delivery. Pharmaceutics 10:122.
  • Fitzgerald KA, Guo J, Tierney EG, et al. (2015). The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials 66:53–66.
  • Franchi A. (2012). Epidemiology and classification of bone tumors. Clin Cases Miner Bone Metab 9:92–5.
  • Fu S, Liang M, Wang Y, et al. (2019). Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces 11:1841–54.
  • Fu SZ, Ni PY, Wang BY, et al. (2012). Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 33:4801–9.
  • Fujiwara T, Ozaki T. (2016). Overcoming therapeutic resistance of bone sarcomas: overview of the molecular mechanisms and therapeutic targets for bone sarcoma stem cells. Stem Cells Int 2016:2603092.
  • Gambera S, Patiño-Garcia A, Alfranca A, et al. (2021). RGB-marking to identify patterns of selection and neutral evolution in human osteosarcoma models. Cancers 13:2003.
  • Gurski LA, Jha AK, Zhang C, et al. (2009). Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 30:6076–85.
  • Hakim DN, Pelly T, Kulendran M, et al. (2015). Benign tumours of the bone: a review. J Bone Oncol 4:37–41.
  • Han Y, Zeng Q, Li H, et al. (2013). The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater 9:9107–17.
  • He Q, Huang Y, Wang S. (2018). Hofmeister effect‐assisted one step fabrication of ductile and strong gelatin hydrogels. Adv Funct Mater 28:1705069.
  • Heris HK, Daoud J, Sheibani S, et al. (2016). Vocal fold tissue regeneration: investigation of the viability, adhesion, and migration of human fibroblasts in a hyaluronic acid/gelatin microgel‐reinforced composite hydrogel for vocal fold tissue regeneration. Adv Healthcare Mater 5:188.
  • Hodgson SM, McNelles SA, Abdullahu L, et al. (2017). Reproducible dendronized PEG hydrogels via SPAAC cross-linking. Biomacromolecules 18:4054–9.
  • Hosoya K, Poulson JM, Azuma C. (2008). Osteoradionecrosis and radiation induced bone tumors following orthovoltage radiation therapy in dogs. Vet Radiol Ultrasound 49:189–95.
  • Hou Q, Paul A, Shakesheff KM. (2004). Injectable scaffolds for tissue regeneration. J Mater Chem 14:1915–23.
  • Huang M-H, Yang M-C. (2008). Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models . Int J Pharm 346:38–46.
  • Huang Q, Zou Y, Arno MC, et al. (2017). Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 46:6255–75.
  • Iizawa T, Taketa H, Maruta M, et al. (2007). Synthesis of porous poly (N‐isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104:842–50.
  • Jaffe N. (2009). Osteosarcoma: review of the past, impact on the future. The American experience. Pediatr Adolesc Osteosarcoma 152:239–62.
  • Jemal A, Murray T, Ward E, et al. (2005). Cancer statistics, 2005. CA Cancer J Clin 55:10–30.
  • Jeznach O, Kołbuk D, Sajkiewicz P. (2018). Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A 106:2762–76.
  • Kim IL, Mauck RL, Burdick JA. (2011). Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32:8771–82.
  • Kolambkar YM, Dupont KM, Boerckel JD, et al. (2011). An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74.
  • Krishna R, Mayer LD. (2000). Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–83.
  • Li F, Truong VX, Fisch P, et al. (2018). Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater 77:48–62.
  • Li X, Zou Q, Wei J, et al. (2021). The degradation regulation of 3D printed scaffolds for promotion of osteogenesis and in vivo tracking. Compos Part B Eng 222:109084.
  • Li Y, Tian H, Chen X. (2015). Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery. J Control Release 213:e140–e141.
  • Liao J, Han R, Wu Y, et al. (2021). Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res 9:1–13.
  • Liao J, Jia Y, Wu Y, et al. (2020). Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12:e1581.
  • Liao J, Shi K, Jia Y, et al. (2021). Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioact Mater 6:2221–30.
  • Lindsey BA, Markel JE, Kleinerman ES. (2017). Osteosarcoma overview. Rheumatol Ther 4:25–43.
  • Liou G-S, Lin P-H, Yen H-J, et al. (2010). Highly flexible and optical transparent 6F-PI/TiO 2 optical hybrid films with tunable refractive index and excellent thermal stability. J Mater Chem 20:531–6.
  • Lipatov YS. (2002). Polymer blends and interpenetrating polymer networks at the interface with solids. Progr Polym Sci 27:1721–801.
  • Liu B, Gu X, Sun Q, et al. (2021). Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair. Adv Funct Mater 31:2010779.
  • Liu C, Wang Z, Wei X, et al. (2021). 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater 131:314–25.
  • Liu H, Wang Y, Cui K, et al. (2019). Advances in hydrogels in organoids and organs‐on‐a‐chip. Adv Mater 31:1902042.
  • Liu W, Sun J, Sun Y, et al. (2020). Multifunctional injectable protein-based hydrogel for bone regeneration. Chem Eng J 394:124875.
  • Liu Y, Yu Q, Chang J, et al. (2019). Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. Nanoscale 11:13678–708.
  • Lü S, Gao C, Xu X, et al. (2015). Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl Mater Interfaces 7:13029–37.
  • Luetke A, Meyers PA, Lewis I, et al. (2014). Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat Rev 40:523–32.
  • Luo S, Wu J, Jia Z, et al. (2019). An injectable, bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration. Macromol Biosci 19:1900047.
  • Ma H, He C, Cheng Y, et al. (2015). Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS Appl Mater Interfaces 7:27040–8.
  • Ma H, Jiang C, Zhai D, et al. (2016). A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater 26:1197–208.
  • Ma P, Chen Y, Lai X, et al. (2021). The translational application of hydrogel for organoid technology: challenges and future perspectives. Macromol Biosci 21:2100191.
  • Macedo F, Ladeira K, Pinho F, et al. (2017). Bone metastases: an overview. Oncol Rev 11:321.
  • Maolin Z, Jun L, Min Y, et al. (2000). The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58:397–400.
  • Menéndez ST, Gallego B, Murillo D, et al. (2021). Cancer stem cells as a source of drug resistance in bone sarcomas. JCM 10:2621.
  • Meyers PA, Heller G, Healey J, et al. (1992). Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 10:5–15.
  • Miller KD, Nogueira L, Mariotto AB, et al. (2019). Cancer treatment and survivorship statistics, 2019. CA A Cancer J Clin 69:363–85.
  • Min Q, Yu X, Liu J, et al. (2019). Chitosan-based hydrogels embedded with hyaluronic acid complex nanoparticles for controlled delivery of bone morphogenetic protein-2. Pharmaceutics 11:214.
  • Misaghi A, Goldin A, Awad M, et al. (2018). Osteosarcoma: a comprehensive review. Sicot J 4:12.
  • Miwa S, Yamamoto N, Tsuchiya H. (2021). Bone and soft tissue tumors: new treatment approaches. Cancers 13:1832.
  • MM S. (2008). Biomaterials for bone materials tissue engineering. Mater Today 11:18–25.
  • Mousa SA, Bharali DJ. (2011). Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers 3:2888–903.
  • Murphy SV, Atala A. (2014). 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–85.
  • Nagahama K, Takahashi A, Ohya Y. (2013). Biodegradable polymers exhibiting temperature-responsive sol–gel transition as injectable biomedical materials. React Funct Polym 73:979–85.
  • Nair DP, Podgórski M, Chatani S, et al. (2014). The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–44.
  • Nalbandian RM, Henry RL, Wilks HS. (1972). Artifical skin. II. Pluronic F-127 silver nitrate or silver lactate gel in the treatment of thermal burns. Journal of Biomedical Materials Research 6:583–90.
  • Park K. (2007). Nanotechnology: what it can do for drug delivery. J Control Release 120:1–3. (
  • Praetorius NP, Mandal TK. (2007). Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37–51.
  • Przekora A. (2019). The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 97:1036–51.
  • Qian J, Wu F. (2013). Thermosensitive PNIPAM semi-hollow spheres for controlled drug release. J Mater Chem B 1:3464–3469.
  • Qing G, Li M, Deng L, et al. (2013). Smart drug release systems based on stimuli-responsive polymers. Mini Rev Med Chem 13:1369–80.
  • Qureshi MA, Khatoon F. (2019). Different types of smart nanogel for targeted delivery. J Sci Adv Mater Devices 4:201–212.
  • Rajani R, Gibbs CP. (2012). Treatment of bone tumors. Surg Pathol Clin 5:301–18.
  • Ren K, He C, Xiao C, et al. (2015). Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 51:238–49.
  • Saber-Samandari S, Mohammadi-Aghdam M, Saber-Samandari S. (2019). A novel magnetic bifunctional nanocomposite scaffold for photothermal therapy and tissue engineering. Int J Biol Macromol 138:810–818.
  • Sasaki N, Nishii S, Yamada K, et al. (2013). Effect of gelatin hydrogel sheet containing basic fibroblast growth factor on proximal sesamoid bone transverse fracture healing in the horse. J Equine Vet Sci 33:210–4.
  • Sasaki Y, Akiyoshi K. (2010). Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10:366–376.
  • Siegel RL, Miller KD, Fuchs HE, et al. (2021). Cancer statistics, 2021. CA A Cancer J Clin 71:7–33.
  • Sisu AM, Stana LG, Petrescu CI, et al. (2012). On the bone tumours: overview, classification, incidence, histopathological issues, behavior and review using literature data. Histopathol Rev Recent Adv 65–80.
  • Sood N, Bhardwaj A, Mehta S, et al. (2016). Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Delivery 23:748–70.
  • Soundarya SP, Menon AH, Chandran SV, Selvamurugan N. (2018). Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 119:1228–39.
  • Steinbichler TB, Dudás J, Skvortsov S, et al. (2018). Therapy resistance mediated by cancer stem cells. Seminars in Cancer Biology 53:156–67.
  • Svensson E, Christiansen CF, Ulrichsen SP, et al. (2017). Survival after bone metastasis by primary cancer type: a Danish population-based cohort study. BMJ Open 7:e016022,
  • Tan B, Tang Q, Zhong Y, et al. (2021). Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration. Int J Oral Sci 13:9–16.
  • Tan B, Wu Y, Wu Y, et al. (2021). Curcumin-microsphere/IR820 hybrid bifunctional hydrogels for in situ osteosarcoma chemo-co-thermal therapy and bone reconstruction. ACS Appl Mater Interfaces 13:31542–31553.
  • Tao J, Zhang Y, Shen A, et al. (2020). Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. Int J Nanomed 15:5855–71.
  • Taran SJ, Taran R, Malipatil NB. (2017). Pediatric osteosarcoma: an updated review. Indian J Med Paediatr Oncol 38:33–43.
  • Thanindratarn P, Dean DC, Nelson SD, et al. (2019). Advances in immune checkpoint inhibitors for bone sarcoma therapy. J Bone Oncol 15:100221.
  • Thévenin-Lemoine C, Destombes L, Vial J, et al. (2018). Planning for bone excision in Ewing sarcoma: post-chemotherapy MRI more accurate than pre-chemotherapy MRI assessment. J Bone Joint Surg Am 100:13–20.
  • Tzanakakis GN, Giatagana E-M, Berdiaki A, et al. (2021). The role of IGF/IGF-IR-signaling and extracellular matrix effectors in bone sarcoma pathogenesis. Cancers 13:2478.
  • Tzeng H-E, Lin S-L, Thadevoos L-A, et al. (2021). The mir-423-5p/MMP-2 axis regulates the nerve growth factor-induced promotion of chondrosarcoma metastasis. Cancers 13:3347.
  • Ullah F, Othman MBH, Javed F, et al. (2015). Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–33.
  • van Nostrum CF, Veldhuis TFJ, Bos GW, et al. (2004). Tuning the degradation rate of poly (2-hydroxypropyl methacrylamide)-g raft-oligo (lactic acid) stereocomplex hydrogels. Macromolecules 37:2113–8.
  • Vanaei S, Parizi MS, Vanaei S, et al. (2021). An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen 2:1–18.
  • Wang H, Zhou L, Xie K, et al. (2018). Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 8:3949–3963.
  • Wang J-Z, You M-L, Ding Z-Q, et al. (2019). A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Mater Sci Eng C Mater Biol Appl 97:1021–35.
  • Wasupalli GK, Verma D. (2020). Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering. Mater Sci Eng C 107:110343.
  • Wichterle O, Lim D. (1960). Hydrophilic gels for biological use. Nature 185:117–8.
  • Wu D, Xie X, Kadi AA, et al. (2018). Photosensitive peptide hydrogels as smart materials for applications. Chin Chem Lett 29:1098–104.
  • Wu W, Shen J, Banerjee P, et al. (2011). A multifuntional nanoplatform based on responsive fluorescent plasmonic ZnO‐Au@ PEG hybrid nanogels. Adv Funct Mater 21:2830–9.
  • Wu Y, Zhao Z, Guan Y, et al. (2014). Galactosylated reversible hydrogels as scaffold for HepG2 spheroid generation. Acta Biomater 10:1965–1974.
  • Xian C, Yuan Q, Bao Z, et al. (2020). Progress on intelligent hydrogels based on RAFT polymerization: design strategy, fabrication and the applications for controlled drug delivery. Chin Chem Lett 31:19–27.
  • Xu X, Jerca VV, Hoogenboom R. (2021). Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater Horiz 8:1173–88.
  • Xue Y, Niu W, Wang M, et al. (2020). Engineering a biodegradable multifunctional antibacterial bioactive nanosystem for enhancing tumor photothermo-chemotherapy and bone regeneration. ACS Nano 14:442–53.
  • Yang Z, Liu J, Lu Y. (2020). Doxorubicin and CD‑CUR inclusion complex co‑loaded in thermosensitive hydrogel PLGA‑PEG‑PLGA localized administration for osteosarcoma. Int J Oncol 57:433–44.
  • Yang Z, Zhao F, Zhang W, et al. (2021). Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: from anti-tumor to repairing bone defects. Chem Eng J 419:129520.
  • Yin F, Wang Z, Jiang Y, et al. (2020). Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma. Nanomed Nanotechnol Biol Med 23:102085.
  • Yu L, Ding J. (2008). Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–81.
  • Yu Q, Meng Z, Liu Y, et al. (2021). Photocuring hyaluronic acid/silk fibroin hydrogel containing curcumin loaded CHITOSAN nanoparticles for the treatment of MG-63 cells and ME3T3-E1 cells. Polymers 13:2302.
  • Yue S, He H, Li B, et al. (2020). Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials 10:1511.
  • Zając AE, Kopeć S, Szostakowski B, et al. (2021). Chondrosarcoma-from molecular pathology to novel therapies. Cancers 13:2390.
  • Zhang J-T, Bhat R, Jandt KD. (2009). Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–97.
  • Zhang P, Zhang L, Qin Z, et al. (2018). Genetically engineered liposome‐like nanovesicles as active targeted transport platform. Adv Mater 30:1705350.
  • Zhang W, Gu J, Li K, et al. (2019). A hydrogenated black TiO2 coating with excellent effects for photothermal therapy of bone tumor and bone regeneration. Mater Sci Eng C Mater Biol Appl 102:458–470.
  • Zhang W, Wang F, Hu C, et al. (2020). The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm Sin B 10:2037–53.
  • Zhang Y, Cai L, Li D, et al. (2018). Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res 11:4806–22.
  • Zhang Y, Ren T, Gou J, et al. (2017). Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release 261:352–66.
  • Zhang YS, Khademhosseini A. (2017). Advances in engineering hydrogels. Science 356:eaaf3627.
  • Zhao H, Feng H, Liu J, et al. (2020). Dual-functional guanosine-based hydrogel integrating localized delivery and anticancer activities for cancer therapy. Biomaterials 230:119598.
  • Zheng P, Ding B, Shi R, et al. (2021). A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction‐mediated cancer therapy. Adv Mater 33:2007426.
  • Zhou Y, Sooriyaarachchi D, Liu D, Tan GZ. (2021). Biomimetic strategies for fabricating musculoskeletal tissue scaffolds: a review. Int J Adv Manuf Technol 112:1211–29.
  • Zhu J, Li F, Wang X, et al. (2018). Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces 10:13304–16.
  • Zhu S, Yao L, Pan C, et al. (2021). 3D printed gellan gum/graphene oxide scaffold for tumor therapy and bone reconstruction. Compos Sci Technol 208:108763.
  • Zur Nieden NI, Turgman CC, Lang X, et al. (2015). Fluorescent hydrogels for embryoid body formation and osteogenic differentiation of embryonic stem cells. ACS Appl Mater Interfaces 7:10599–605.