3,725
Views
28
CrossRef citations to date
0
Altmetric
Research Articles

Recent advances in anti-multidrug resistance for nano-drug delivery system

, , , &
Pages 1684-1697 | Received 13 Apr 2022, Accepted 09 May 2022, Published online: 26 May 2022

References

  • Afrooz H, Ahmadi F, Fallahzadeh F, et al. (2017). Design and characterization of paclitaxel-verapamil co-encapsulated PLGA nanoparticles: potential system for overcoming P-glycoprotein mediated MDR. J Drug Delivery Sci Technol 41:1684–81.
  • Aniogo EC, Plackal Adimuriyil George B, Abrahamse H. (2019). The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int 19:91.
  • Aznar MA, Lasa-Saracibar B, Blanco-Prieto MJ. (2014). Edelfosine lipid nanoparticles overcome multidrug resistance in K-562 leukemia cells by a caspase-independent mechanism. Mol Pharm 11:2650–8.
  • Beagan AM, Alghamdi AA, Lahmadi SS, et al. (2020). Folic acid-terminated poly(2-diethyl amino ethyl methacrylate) brush-gated magnetic mesoporous nanoparticles as a smart drug delivery system. Polymers 13:59.
  • Cabrera-González J, Soriano J, Conway-Kenny R, et al. (2019). Multinuclear Ru(ii) and Ir(iii) decorated tetraphenylporphyrins as efficient PDT agents. Biomater Sci 7:3287–96.
  • Chen HH, Lu IL, Liu TI, et al. (2019a). Indocyanine green/doxorubicin-encapsulated functionalized nanoparticles for effective combination therapy against human MDR breast cancer. Colloids Surf B Biointerfaces 177:294–305.
  • Chen W, Shi K, Chu B, et al. (2019b). Mitochondrial surface engineering for multidrug resistance reversal. Nano Lett 19:2905–13.
  • Chen X, Gu J, Sun L, et al. (2021a). Efficient drug delivery and anticancer effect of micelles based on vitamin E succinate and chitosan derivatives. Bioact Mater 6:3025–35.
  • Chen Y, Fang L, Zhou W, et al. (2021b). Nitric oxide-releasing micelles with intelligent targeting for enhanced anti-tumor effect of cisplatin in hypoxia. J Nanobiotechnology 19:246.
  • Cheng X, Li D, Sun M, et al. (2019). Co-delivery of DOX and PDTC by pH-sensitive nanoparticles to overcome multidrug resistance in breast cancer. Colloids Surf B Biointerfaces 181:185–97.
  • Cui Z, Zhang Y, Xia K, et al. (2018). Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat Commun 9:4347.
  • Ding Y, Du C, Qian J, et al. (2019). NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Lett 19:4362–70.
  • Duan X, Xiao J, Yin Q, et al. (2013). Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7:5858–69.
  • Fu J, Li T, Yang Y, et al. (2021). Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials 268:120537.
  • Gaio E, Guerrini A, Ballestri M, et al. (2019). Keratin nanoparticles co-delivering Docetaxel and Chlorin e6 promote synergic interaction between chemo- and photo-dynamic therapies. J Photochem Photobiol B 199:111598.
  • Gao P, Zheng T, Cui B, et al. (2021a). Reversing tumor multidrug resistance with a catalytically active covalent organic framework. Chem Commun (Camb) 57:13309–12.
  • Gao Y, Zhu Y, Xu X, et al. (2021b). Surface PEGylated cancer cell membrane-coated nanoparticles for codelivery of curcumin and doxorubicin for the treatment of multidrug resistant esophageal carcinoma. Front Cell Dev Biol 9:688070.
  • Gu YJ, Cheng J, Man CW, et al. (2012). Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine 8:204–11.
  • Guan J, Sun J, Sun F, et al. (2017). Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes. Nanoscale 9:9190–201.
  • Guo Z, Zheng K, Tan Z, et al. (2018). Overcoming drug resistance with functional mesoporous titanium dioxide nanoparticles combining targeting, drug delivery and photodynamic therapy. J Mater Chem B 6:7750–9.
  • Han K, Zhu J-Y, Jia H-Z, et al. (2016). Mitochondria-targeted chimeric peptide for trinitarian overcoming of drug resistance. ACS Appl Mater Interfaces 8:25060–8.
  • Han X, Su R, Huang X, et al. (2019). Triphenylphosphonium-modified mitochondria-targeted paclitaxel nanocrystals for overcoming multidrug resistance. Asian J Pharm Sci 14:569–80.
  • Horak KE. (2020). RNAi: applications in vertebrate pest management. Trends Biotechnol 38:1200–2.
  • Hou L, Tian C, Chen D, et al. (2019). Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy. Eur J Pharm Sci 140:105071.
  • Hou Y, Kuang Y, Jiang Q, et al. (2022). Arginine-peptide complex-based assemblies to combat tumor hypoxia for enhanced photodynamic therapeutic effect. Nano Res.
  • Hu C, Gu F, Gong C, et al. (2022). Co-delivery of the autophagy inhibitor si-Beclin1 and the doxorubicin nano-delivery system for advanced prostate cancer treatment. J Biomater Appl 36:1317–31.
  • Hu Y, Zhang HR, Dong L, et al. (2019). Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles. Nanoscale 11:11789–807.
  • Huang P, Wang D, Su Y, et al. (2014). Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc 136:11748–56.
  • Huang X, Lu Y, Guo M, et al. (2021). Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view. Theranostics 11:7546–69.
  • Hussain A, Guo S. (2019). NIR-triggered release of DOX from sophorolipid-coated mesoporous carbon nanoparticles with the phase-change material 1-tetradecanol to treat MCF-7/ADR cells. J Mater Chem B 7:974–85.
  • Jackson J, Leung D, Burt H. (2020). The use of ultrasound to increase the uptake and cytotoxicity of dual taxane and P-glycoprotein inhibitor loaded, solid core nanoparticles in drug resistant cells. Ultrasonics 101:106033.
  • Ji C, Cheng W, Hu Y, et al. (2021). A nano vector with photothermally enhanced drug release and retention to overcome cancer multidrug resistance. Nano Today 36:101020.
  • Jiang D, Xu M, Pei Y, et al. (2019). Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer. Acta Biomater 88:406–21.
  • Karges J, Yempala T, Tharaud M, et al. (2020). A multi-action and multi-target RuII -PtIV conjugate combining cancer-activated chemotherapy and photodynamic therapy to overcome drug resistant Cancers. Angew Chem Int Ed Engl 59:7069–75.
  • Ke CJ, Chiang WL, Liao ZX, et al. (2013). Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance. Biomaterials 34:1–10.
  • Kim MS, Haney MJ, Zhao Y, et al. (2016). Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12:655–64.
  • Lee H, Dey DK, Kim K, et al. (2022). Hypoxia-responsive nanomedicine to overcome tumor microenvironment-mediated resistance to chemo-photodynamic therapy. Mater Today Adv 14:100218.
  • Li D, Lin L, Fan Y, et al. (2021a). Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact Mater 6:729–39.
  • Li J, Zheng L, Wang R, et al. (2020). Synergistic combination of sodium aescinate-stabilized, polymer-free, twin-like nanoparticles to reverse paclitaxel resistance. Int J Nanomed 15:5839–53.
  • Li M, Feng W, Zhao M, et al. (2021b). Overcoming tumor hypoxia through multiple pathways using an all-in-one polymeric therapeutic agent to enhance synergistic cancer photo/chemotherapy effects. Bioconjug Chem 32:1864–74.
  • Li Q, Zhou Y, He W, et al. (2021c). Platelet-armored nanoplatform to harmonize janus-faced IFN-γ against tumor recurrence and metastasis. J Control Release 338:33–45.
  • Li R, Chen Z, Dai Z, et al. (2021d). Nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. Cancer Biol Med 18:388–400.
  • Li W, Guo X, Kong F, et al. (2017a). Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres. J Control Release 258:171–81.
  • Li Y, Gao X, Yu Z, et al. (2018). Reversing multidrug resistance by multiplexed gene silencing for enhanced breast cancer chemotherapy. ACS Appl Mater Interfaces 10:15461–6.
  • Li YJ, Lei YH, Yao N, et al. (2017b). Autophagy and multidrug resistance in cancer. Chin J Cancer 36:52.
  • Li Z, Wang F, Li Y, et al. (2021e). Combined anti-hepatocellular carcinoma therapy inhibit drug-resistance and metastasis via targeting “substance P-hepatic stellate cells-hepatocellular carcinoma” axis. Biomaterials 276:121003.
  • Lin YX, Wang Y, An HW, et al. (2019). Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett 19:2968–78.
  • Liu J, Zhu C, Xu L, et al. (2020a). Nanoenabled intracellular calcium bursting for safe and efficient reversal of drug resistance in tumor cells. Nano Lett 20:8102–11.
  • Liu M, Fu M, Yang X, et al. (2020b). Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B Biointerfaces 196:111284.
  • Liu P, Xie X, Shi X, et al. (2019a). Oxygen-self-supplying and HIF-1α-inhibiting core-shell nanosystem for hypoxia-resistant photodynamic therapy. ACS Appl Mater Interfaces 11:48261–70.
  • Liu P, Zhou Y, Shi X, et al. (2021a). A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances. J Nanobiotechnology 19:149.
  • Liu WT, Lo YL, Hsu C, et al. (2019b). CS-PEI/Beclin-siRNA downregulate multidrug resistance proteins and increase paclitaxel therapeutic efficacy against non-small cell lung cancer. Mol Ther Nucleic Acids 17:477–90.
  • Liu X, Yuan Z, Tang Z, et al. (2021b). Selenium-driven enhancement of synergistic cancer chemo-/radiotherapy by targeting nanotherapeutics. Biomater Sci 9:4691–700.
  • Liu Y, Lillehei K, Cobb WN, et al. (2001). Overcoming MDR by ultrasound-induced hyperthermia and P-glycoprotein modulation. Biochem Biophys Res Commun 289:62–8.
  • Liu Y, Zhou C, Wei S, et al. (2018). Paclitaxel delivered by CD44 receptor-targeting and endosomal pH sensitive dual functionalized hyaluronic acid micelles for multidrug resistance reversion. Colloids Surf B Biointerfaces 170:330–40.
  • Ma X, Wu Y, Jin S, et al. (2011). Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. Acs Nano 5:8629–39.
  • Ma X, Yao M, Shi J, et al. (2020). High intensity focused ultrasound-responsive and ultrastable cerasomal perfluorocarbon nanodroplets for alleviating tumor multidrug resistance and epithelial-mesenchymal transition. ACS Nano 14:15904–18.
  • Meng L, Xia X, Yang Y, et al. (2016). Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm 513:8–16.
  • Otvagin VF, Kuzmina NS, Kudriashova ES, et al. (2022). Conjugates of porphyrinoid-based photosensitizers with cytotoxic drugs: current progress and future directions toward selective photodynamic therapy. J Med Chem 65:1695–734.
  • Pan J, Mendes LP, Yao M, et al. (2019). Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 136:18–28.
  • Pan Y, Zhou S, Li Y, et al. (2020). Novel dendritic polyglycerol-conjugated, mesoporous silica-based targeting nanocarriers for co-delivery of doxorubicin and tariquidar to overcome multidrug resistance in breast cancer stem cells. J Control Release 330:1106–17.
  • Pramual S, Lirdprapamongkol K, Jouan-Hureaux V, et al. (2020). Overcoming the diverse mechanisms of multidrug resistance in lung cancer cells by photodynamic therapy using pTHPP-loaded PLGA-lipid hybrid nanoparticles. Eur J Pharm Biopharm 149:218–28.
  • Pucci C, Martinelli C, Degl’Innocenti A, et al. (2021). Light-activated biomedical applications of chlorophyll derivatives. Macromol Biosci 21:e2100181.
  • Qiu L, Chen T, Ocsoy I, et al. (2015). A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett 15:457–63.
  • Ren T, Wu W, Jia M, et al. (2013). Reduction-cleavable polymeric vesicles with efficient glutathione-mediated drug release behavior for reversing drug resistance. ACS Appl Mater Interfaces 5:10721–30.
  • Ruan L, Chen J, Du C, et al. (2022). Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioact Mater 13:191–9.
  • Sato M, Seki T, Konno A, et al. (2019). Rapamycin activates mammalian microautophagy. J Pharmacol Sci 140:201–4.
  • Shao M, Chang C, Liu Z, et al. (2019). Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids Surf B Biointerfaces 183:110427.
  • Shen J, Wang Q, Hu Q, et al. (2014). Restoration of chemosensitivity by multifunctional micelles mediated by P-gp siRNA to reverse MDR. Biomaterials 35:8621–34.
  • Shi C, Zhang Z, Shi J, et al. (2015). Co-delivery of docetaxel and chloroquine via PEO–PPO–PCL/TPGS micelles for overcoming multidrug resistance. Int J Pharm 495:932–9.
  • Shu J, Li X, Dang J, et al. (2021). Drug resistance reversal by interventing cancer bioenergetics with spherical helical polypeptide-potented gene silencing. Chem Eng J 414:128545.
  • Singh MS, Tammam SN, Shetab Boushehri MA, et al. (2017). MDR in cancer: addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 126:2–30.
  • Sivak L, Subr V, Tomala J, et al. (2017). Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate. Biomaterials 115:65–80.
  • Su FX, Zhao X, Dai C, et al. (2019). A multifunctional persistent luminescent nanoprobe for imaging guided dual-stimulus responsive and triple-synergistic therapy of drug resistant tumor cells. Chem Commun (Camb) 55:5283–6.
  • Sun JH, Ye C, Bai EH, et al. (2019). Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. Nanotechnology 30:085101.
  • Sun R, Shen S, Zhang YJ, et al. (2016). Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials 103:44–55.
  • Sun WL, Chen J, Wang YP, et al. (2011). Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy 7:1035–44.
  • Sun WL, Lan D, Gan TQ, et al. (2015). Autophagy facilitates multidrug resistance development through inhibition of apoptosis in breast cancer cells. Neoplasma 62:199–208.
  • Takahashi K, Taki S, Yasui H, et al. (2021). HER2 targeting near-infrared photoimmunotherapy for a CDDP-resistant small-cell lung cancer. Cancer Med 10:8808–19.
  • Tang Y, Liang J, Wu A, et al. (2017). Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis. ACS Appl Mater Interfaces 9:26648–64.
  • Tariq I, Ali MY, Janga H, et al. (2020). Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in tumor metastasis: a gravity to space investigation. Int J Pharm 591:119993.
  • Tian F, Dahmani FZ, Qiao J, et al. (2018). A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater 75:398–412.
  • Tian G, Zheng X, Zhang X, et al. (2015). TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials 40:107–16.
  • Tian Z, Zhao J, Zhao S, et al. (2022). Phytic acid-modified CeO(2) as Ca(2+) inhibitor for a security reversal of tumor drug resistance. Nano Res. 15:4334–43.
  • Wan HY, Chen JL, Zhu X, et al. (2018). Titania-coated gold nano-bipyramids for blocking autophagy flux and sensitizing cancer cells to proteasome inhibitor-induced death. Adv Sci (Weinh) 5:1700585.
  • Wang B, Feng D, Han L, et al. (2014a). Combination of apolipoprotein A1-modi liposome-doxorubicin with autophagy inhibitors overcame drug resistance in vitro. J Pharm Sci 103:3994–4004.
  • Wang C, Wei X, Shao G. (2021a). Functional doxorubicin-loaded omega-3 unsaturated fatty acids nanoparticles in reversing hepatocellular carcinoma multidrug resistance. Med Sci Monit 27:e927727.
  • Wang H, Liang Y, Yin Y, et al. (2021b). Carbon nano-onion-mediated dual targeting of P-selectin and P-glycoprotein to overcome cancer drug resistance. Nat Commun 12:312.
  • Wang H, Zhang F, Wen H, et al. (2020a). Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis. J Nanobiotechnology 18:8.
  • Wang H, Zhao Y, Wang H, et al. (2014b). Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. J Control Release 192:47–56.
  • Wang J, Lv FM, Wang DL, et al. (2020b). Synergistic antitumor effects on drug-resistant breast cancer of paclitaxel/lapatinib composite nanocrystals. Molecules 25:604.
  • Wang J, Wu L, Kou L, et al. (2016a). Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride. Int J Pharm 513:218–26.
  • Wang JW, Chen QW, Luo GF, et al. (2021c). A self-driven bioreactor based on bacterium-metal-organic framework biohybrids for boosting chemotherapy via cyclic lactate catabolism. ACS Nano 15:17870–84.
  • Wang K, Jiang M, Zhou J, et al. (2022). Tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem to overcome hypoxic resistance and enhance chemoimmunotherapy. ACS Nano 16:721–35.
  • Wang L, Chang Y, Feng Y, et al. (2019a). Nitric oxide stimulated programmable drug release of nanosystem for multidrug resistance cancer therapy. Nano Lett 19:6800–11.
  • Wang M, Li Y, Huangfu M, et al. (2016b). Pluronic-attached polyamidoamine dendrimer conjugates overcome drug resistance in breast cancer. Nanomedicine (Lond) 11:2917–34.
  • Wang M, Xiao Y, Li Y, et al. (2019b). Reactive oxygen species and near-infrared light dual-responsive indocyanine green-loaded nanohybrids for overcoming tumour multidrug resistance. Eur J Pharm Sci 134:185–93.
  • Wang Q, Zou C, Wang L, et al. (2019c). Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater 94:469–81.
  • Wang T, Luo Y, Lv H, et al. (2019d). Aptamer-based erythrocyte-derived mimic vesicles loaded with siRNA and doxorubicin for the targeted treatment of multidrug-resistant tumors. ACS Appl Mater Interfaces 11:45455–66.
  • Wang T, Wang D, Yu H, et al. (2016c). Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 10:3496–508.
  • Wang X, Xiong T, Cui M, et al. (2021d). A novel targeted co-delivery nanosystem for enhanced ovarian cancer treatment via multidrug resistance reversion and mTOR-mediated signaling pathway. J Nanobiotechnology 19:444.
  • Wang Y, Wang F, Liu Y, et al. (2018). Glutathione detonated and pH responsive nano-clusters of Au nanorods with a high dose of DOX for treatment of multidrug resistant cancer. Acta Biomater 75:334–45.
  • Wang YY, Zhang DD, Kong YY, et al. (2016d). CS/PAA@TPGS/PLGA nanoparticles with intracellular pH-sensitive sequential release for delivering drug to the nucleus of MDR cells. Colloids Surf B Biointerfaces 145:716–27.
  • Wei D, Yu Y, Zhang X, et al. (2020). Breaking the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano 14:16984–96.
  • Wei G, Yang G, Wei B, et al. (2019). Near-infrared light switching nitric oxide nanoemitter for triple-combination therapy of multidrug resistant cancer. Acta Biomater 100:365–77.
  • Zheng W, Cao C, Liu Y, et al. (2015). Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater 11:368–80.
  • Wilson CS, Medeiros LJ, Lai R, et al. (2001). DNA topoisomerase IIα in multiple myeloma: a marker of cell proliferation and not drug resistance. Mod Pathol 14:886–91.
  • Wu W, Chen M, Luo T, et al. (2020). ROS and GSH-responsive S-nitrosoglutathione functionalized polymeric nanoparticles to overcome multidrug resistance in cancer. Acta Biomater 103:259–71.
  • Wu X, Liu J, Yang L, et al. (2019). Photothermally controlled drug release system with high dose loading for synergistic chemo-photothermal therapy of multidrug resistance cancer. Colloids Surf B Biointerfaces 175:239–47.
  • Xiao Y, Liu J, Guo M, et al. (2018). Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. Nanoscale 10:12639–49.
  • Xu S, Zhu X, Zhang C, et al. (2018a). Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat Commun 9:2053.
  • Xu T, Guo P, He Y, et al. (2020). Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 34:2438–58.
  • Xu W, Gao X, Ge P, et al. (2018b). Dendrimer-like mesoporous silica nanospheres with suitable surface functionality to combat the multidrug resistance. Int J Pharm 553:349–62.
  • Yan J, Zhang Y, Zheng L, et al. (2022). Let‐7i miRNA and platinum loaded nano‐graphene oxide platform for detection/reversion of drug resistance and synergetic chemical‐photothermal inhibition of cancer cell. Chin Chem Lett 33:767–72.
  • Yang B, Hao A, Chen L. (2020). Mirror siRNAs loading for dual delivery of doxorubicin and autophagy regulation siRNA for multidrug reversing chemotherapy. Biomed Pharmacother 130:110490.
  • Yang C, Pang X, Chen W, et al. (2019). Environmentally responsive dual-targeting nanotheranostics for overcoming cancer multidrug resistance. Science Bulletin 64:705–14.
  • Yao HJ, Sun L, Liu Y, et al. (2016). Monodistearoylphosphatidylethanolamine-hyaluronic acid functionalization of single-walled carbon nanotubes for targeting intracellular drug delivery to overcome multidrug resistance of cancer cells. Carbon 96:362–76.
  • Ye S, Shen J, Choy E, et al. (2016). p53 overexpression increases chemosensitivity in multidrug-resistant osteosarcoma cell lines. Cancer Chemother Pharmacol 77:349–56.
  • Yee Kuen C, Masarudin MJ. (2022). Chitosan nanoparticle-based system: a new insight into the promising controlled release system for lung cancer treatment. Molecules 27:473.
  • Yhee JY, Song S, Lee SJ, et al. (2015). Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release 198:1–9.
  • Yin Q, Shen J, Chen L, et al. (2012). Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials 33:6495–506.
  • Yu Y, Zhang Z, Wang Y, et al. (2017). A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy. Acta Biomater 59:170–80.
  • Zeng X, Wang Y, Han J, et al. (2020). Fighting against drug-resistant tumors using a dual-responsive Pt(IV)/Ru(II) bimetallic polymer. Adv Mater 32:e2004766.
  • Zhang J, Liang L, Li Z, et al. (2020). Multi-functionalized nano-conjugate for combating multidrug resistant breast Cancer via starvation-assisted chemotherapy. Mater Sci Eng C Mater Biol Appl 116:111127.
  • Zhang M, Qin X, Xu W, et al. (2021). Engineering of a dual-modal phototherapeutic nanoplatform for single NIR laser-triggered tumor therapy. J Colloid Interface Sci 594:493–501.
  • Zhang R, Gao S, Wang Z, et al. (2017). Multifunctional molecular beacon micelles for intracellular mRNA imaging and synergistic therapy in multidrug-resistant cancer cells. Adv Funct Mater 27:1701027.
  • Zhang X, He F, Xiang K, et al. (2018a). CD44-targeted facile enzymatic activatable chitosan nanoparticles for efficient antitumor therapy and reversal of multidrug resistance. Biomacromolecules 19:883–95.
  • Zhang Y, Sha R, Zhang L, et al. (2018b). Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat Commun 9:4236.
  • Zhang Y, Zhang L, Gao J, et al. (2019). Pro-death or pro-survival: contrasting paradigms on nanomaterial-induced autophagy and exploitations for cancer therapy. Acc Chem Res 52:3164–76.
  • Zhao G, Sun Y, Dong X. (2020). Zwitterionic polymer micelles with dual conjugation of doxorubicin and curcumin: synergistically enhanced efficacy against multidrug-resistant tumor cells. Langmuir 36:2383–95.
  • Zhao P, Li L, Zhou S, et al. (2018). TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Mater Sci Eng C Mater Biol Appl 84:108–17.
  • Zhen S, Yi X, Zhao Z, et al. (2019). Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 218:119330.
  • Zheng Y, Li X, Dong C, et al. (2022). Ultrasound-augmented nanocatalytic ferroptosis reverses chemotherapeutic resistance and induces synergistic tumor nanotherapy. Adv Funct Materials 32:2107529.
  • Zhong G, Yang C, Liu S, et al. (2019). Polymers with distinctive anticancer mechanism that kills MDR cancer cells and inhibits tumor metastasis. Biomaterials 199:76–87.
  • Zhou S, Shang Q, Wang N, et al. (2020). Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone. J Control Release 328:617–30.
  • Zhuang J, Zhang W, Xuan Q, et al. (2021). Oxygen-abundant and pH/NIR dual-responsive nanocarriers for tumor hypoxia reduction therapy. ACS Appl Nano Mater 4:11480–92.