2,737
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Multimodal imaging and photothermal synergistic immunotherapy of retinoblastoma with tuftsin-loaded carbonized MOF nanoparticles

, , , , , , , , & show all
Pages 1785-1799 | Received 10 Mar 2022, Accepted 16 May 2022, Published online: 01 Jun 2022

References

  • An Y, Li L, Yang D, et al. (2014). Anticancer activity of tuftsin-derived T peptide in postoperative residual tumors. Anticancer Drugs 25:1785–67.
  • Arranja AG, Pathak V, Lammers T, Shi Y. (2017). Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 115:87–95.
  • Bowser BH, Brower LJ, Ohnsorg ML, et al. (2018). Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: effect of activation and ammonia exposure on morphology, crystallinity, and composition. Nanomaterials 8:650.
  • Chanmee T, Ontong P, Konno K, Itano N. (2014). Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6:1670–90.
  • Chen H, Sulejmanovic D, Moore T, et al. (2014). Iron-loaded magnetic nanocapsules for pH-triggered drug release and MRI imaging. Chem Mater 26:2105–12.
  • Chen Q, Hu Q, Dukhovlinova E, et al. (2019). Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv Mater 31:e1900192.
  • Chen Q, Xu L, Liang C, et al. (2016). Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193.
  • Cheng HW, Tsao HY, Chiang CS, Chen SY. (2021). Advances in magnetic nanoparticle-mediated cancer immune-theranostics. Adv Healthc Mater 10:e2001451.
  • de Maar JS, Sofias AM, Porta Siegel T, et al. (2020). Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics 10:1884–909.
  • Donahue ND, Acar H, Wilhelm S. (2019). Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 143:68–96.
  • Fabian ID, Onadim Z, Karaa E, et al. (2018). The management of retinoblastoma. Oncogene 37:1551–60.
  • Fridkin M, Najjar VA. (1989). Tuftsin: its chemistry, biology, and clinical potential. Crit Rev Biochem Mol Biol 24:1–40.
  • Gerspach J, Pfizenmaier K, Wajant H. (2009). Improving TNF as a cancer therapeutic: tailor-made TNF fusion proteins with conserved antitumor activity and reduced systemic side effects. Biofactors 35:364–72.
  • Guerra AD, Yeung OWH, Qi X, et al. (2017). The anti-tumor effects of M1 macrophage-loaded poly (ethylene glycol) and gelatin-based hydrogels on hepatocellular carcinoma. Theranostics 7:3732–44.
  • Guo Y, Ran Y, Wang Z, et al. (2019). Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials 219:119370.
  • Haimov-Talmoud E, Harel Y, Schori H, et al. (2019). Magnetic targeting of mTHPC to improve the selectivity and efficiency of photodynamic therapy. ACS Appl Mater Interfaces 11:45368–80.
  • Hou X, Tao Y, Pang Y, et al. (2018). Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int J Cancer 143:3050–60.
  • Huo SH, An HY, Yu J, et al. (2017). Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction. J Chromatogr A 1517:18–25.
  • Jian J, Liu C, Gong Y, et al. (2014). India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy. Theranostics 4:1026–38.
  • Kaewkhaw R, Rojanaporn D. (2020). Retinoblastoma: etiology, modeling, and treatment. Cancers 12:2304.
  • Karami A, Mohamed O, Ahmed A, et al. (2021). Recent advances in metal-organic frameworks as anticancer drug delivery systems: a review. Anticancer Agents Med Chem 21:2487–504.
  • Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. (2016). Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 99:180–5.
  • Lee C, Kwon W, Beack S, et al. (2016). Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy. Theranostics 6:2196–208.
  • Li K, Zhang Y, Lin YZ, et al. (2019). Versatile functional porous cobalt-nickel phosphide-carbon cocatalyst derived from a metal-organic framework for boosting the photocatalytic activity of graphitic carbon nitride. ACS Appl Mater Interfaces 11:28918–27.
  • Li W, Yang J, Luo L, et al. (2019). Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 10:3349.
  • Liang Z, Qu C, Xia D, et al. (2018). Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed Engl 57:9604–33.
  • Liu Y, Kangas J, Wang Y, et al. (2020). Correction: Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Nanoscale 12:20543.
  • Lu H, Wu L, Liu L, et al. (2018). Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol 154:203–12.
  • Mantovani A, Sica A, Locati M. (2007). New vistas on macrophage differentiation and activation. Eur J Immunol 37:14–6.
  • Munier FL, Beck-Popovic M, Chantada GL, et al. (2020). Conservative management of retinoblastoma: challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity". Prog Retin Eye Res 78:100857.
  • Musetti S, Huang L. (2018). Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano 12:11740–55.
  • Nichols JW, Bae YH. (2014). EPR: evidence and fallacy. J Control Release 190:451–64.
  • Overchuk M, Zheng G. (2018). Overcoming obstacles in the tumor microenvironment: recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 156:217–37.
  • Piña Y, Boutrid H, Murray TG, et al. (2010). Impact of tumor-associated macrophages in LH(BETA)T(AG) mice on retinal tumor progression: relation to macrophage subtype. Invest Ophthalmol Vis Sci 51:2671–7.
  • Qiu X, Zhao T, Luo R, et al. (2022). Tumor-associated macrophages: key players in triple-negative breast cancer. Front Oncol 12:772615.
  • Riley RS, June CH, Langer R, Mitchell MJ. (2019). Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18:175–96.
  • Singh N, Qutub S, Khashab NM. (2021). Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J Mater Chem B 9:5925–34.
  • Song G, Kenney M, Chen YS, et al. (2020). Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat Biomed Eng 4:325–34.
  • Väyrynen JP, Haruki K, Lau MC, et al. (2021). The prognostic role of macrophage polarization in the colorectal cancer microenvironment. Cancer Immunol Res 9:8–19.
  • Wang HF, Ran R, Liu Y, et al. (2018). Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation. ACS Nano 12:11600–9.
  • Wang M, Yang Q, Li M, et al. (2020). Multifunctional nanoparticles for multimodal imaging-guided low-intensity focused ultrasound/immunosynergistic retinoblastoma therapy. ACS Appl Mater Interfaces 12:5642–57.
  • Wu M, Xiong H, Zou H, et al. (2018). A laser-activated multifunctional targeted nanoagent for imaging and gene therapy in a mouse xenograft model with retinoblastoma Y79 cells. Acta Biomater 70:211–26.
  • Wu MX, Yang YW. (2017). Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 29.
  • Xia W, Qiu B, Xia D, Zou R. (2013). Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci Rep 3:1935.
  • Yamamoto N, Sery TW, Hoober JK, et al. (1994). Effectiveness of photofrin II in activation of macrophages and in vitro killing of retinoblastoma cells. Photochem Photobiol 60:160–4.
  • Zhang S, Lu Q, Wang F, et al. (2021). Gold-platinum nanodots with high-peroxidase-like activity and photothermal conversion efficiency for antibacterial therapy. ACS Appl Mater Interfaces 13:37535–44.
  • Zhi D, Yang T, O'Hagan J, et al. (2020). Photothermal therapy. J Control Release 325:52–71.