1,627
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Pentapeptide modified ethosomes for enhanced skin retention and topical efficacy activity of indomethacin

, , , , , , , , , & show all
Pages 1800-1810 | Received 22 Mar 2022, Accepted 16 May 2022, Published online: 03 Jun 2022

References

  • Abd E, Gomes J, Sales CC, et al. (2021). Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test. Int J Cosmet Sci 43:1800–10.
  • Abdallah MH, Abu Lila AS, Unissa R, et al. (2021). Preparation, characterization and evaluation of anti-inflammatory and anti-nociceptive effects of brucine-loaded nanoemulgel. Colloids Surf B Biointerfaces 205:111868.
  • Aragao Horoiwa T, Cortez M, Sauter IP, et al. (2020). Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: ex vivo cutaneous retention and in vivo evaluation. Eur J Pharm Sci 147:105295.
  • Bae Y, Lee J, Kho C, et al. (2021). Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy. Korean J Physiol Pharmacol 25:467–78.
  • Cai W, Liu J, Zheng L, et al. (2021). Study on the anti-infection ability of vancomycin cationic liposome combined with polylactide fracture internal fixator. Int J Biol Macromol 167:834–44.
  • Carita AC, Eloy JO, Chorilli M, et al. (2018). Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr Med Chem 25:606–35.
  • Chen M, Liu X, Fahr A. (2011). Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: in vitro study with finite and infinite dosage application. Int J Pharm 408:223–34.
  • Danaei M, Dehghankhold M, Ataei S, et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57.
  • Doppalapudi S, Jain A, Chopra DK, et al. (2017). Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur J Pharm Sci 96:515–29.
  • Dudhipala N, Phasha Mohammed R, Adel Ali Youssef A, et al. (2020). Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Drug Dev Ind Pharm 46:1334–44.
  • El Maghraby GM. (2010). Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. Colloids Surf B Biointerfaces 75:595–600.
  • Faisal W, Soliman GM, Hamdan AM. (2018). Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res 28:14–21.
  • Froelich A, Osmałek T, Snela A, et al. (2017). Novel microemulsion-based gels for topical delivery of indomethacin: formulation, physicochemical properties and in vitro drug release studies. J Colloid Interface Sci 507:323–36.
  • Gao H, Kang N, Hu C, et al. (2020). Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. Phytomedicine 69:153197.
  • Hua S. (2015). Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 6:219.
  • Kapoor MS, GuhaSarkar S, Banerjee R. (2017). Stratum corneum modulation by chemical enhancers and lipid nanostructures: implications for transdermal drug delivery. Ther Deliv 8:701–18.
  • Li J, Xu L, Wang H, et al. (2016). Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: superiority of amino modification. Mater Sci Eng C Mater Biol Appl 59:710–6.
  • Maione-Silva L, de Castro EG, Nascimento TL, et al. (2019). Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts. Sci Rep 9:522.
  • Malakar J, Sen SO, Nayak AK, et al. (2012). Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J 20:355–63.
  • Nagai N, Ogata F, Yamaguchi M, et al. (2019). Combination with l-menthol enhances transdermal penetration of indomethacin solid nanoparticles. Int J Mol Sci 20:3644.
  • Nasr M, Younes H, Abdel-Rashid RS. (2020). Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv Transl Res 10:1302–13.
  • Niu J, Yuan M, Chen C, et al. (2020). Berberine-loaded thiolated pluronic F127 polymeric micelles for improving skin permeation and retention. Int J Nanomedicine 15:9987–10005.
  • Ogiso T, Yamaguchi T, Iwaki M, et al. (2001). Effect of positively and negatively charged liposomes on skin permeation of drugs. J Drug Target 9:49–59.
  • Park H, An E, Cho Lee AR. (2017). Effect of Palmitoyl-Pentapeptide (Pal-KTTKS) on wound contractile process in relation with connective tissue growth factor and alpha-smooth muscle actin expression. Tissue Eng Regen Med 14:73–80.
  • Sinico C, Manconi M, Peppi M, et al. (2005). Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle-skin interaction. J Control Release 103:123–36.
  • Tałałaj U, Uścinowicz P, Bruzgo I, et al. (2019). The effects of a novel series of KTTKS analogues on cytotoxicity and proteolytic activity. Molecules 24:3698.
  • Tang S, Lucius R, Wenck H, et al. (2013). UV-mediated downregulation of the endocytic collagen receptor, Endo180, contributes to accumulation of extracellular collagen fragments in photoaged skin. J Dermatol Sci 70:42–8.
  • Toropainen E, Fraser-Miller SJ, Novakovic D, et al. (2021). Biopharmaceutics of topical ophthalmic suspensions: importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics 13:452.
  • Vasanth S, Dubey A, G SR, et al. (2020). Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: a collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech 21:61.
  • Verma DD, Verma S, Blume G, et al. (2003). Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258:141–51.
  • Wang WX, Feng SS, Zheng CH. (2016). A comparison between conventional liposome and drug-cyclodextrin complex in liposome system. Int J Pharm 513:387–92.
  • Wang Y, Wang X, Wang X, et al. (2019). Design and development of lidocaine microemulsions for transdermal delivery. AAPS PharmSciTech 20:63.
  • Zhang W, Zhang CN, He Y, et al. (2017). Factors affecting the dissolution of indomethacin solid dispersions. AAPS PharmSciTech 18:3258–73.
  • Zhang W, Zheng N, Chen L, et al. (2018). Effect of shape on mesoporous silica nanoparticles for oral delivery of indomethacin. Pharmaceutics 11:4.
  • Zhang Y, Shen L, Zhang K, et al. (2015). Enhanced antioxidation via encapsulation of isooctyl p-methoxycinnamate with sodium deoxycholate-mediated liposome endocytosis. Int J Pharm 496:392–400.
  • Zhang YT, Shen LN, Wu ZH, et al. (2014). Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy. Int J Pharm 471:449–52.