3,363
Views
31
CrossRef citations to date
0
Altmetric
Research Articles

Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo

, , , , , , , , , , , & ORCID Icon show all
Pages 1878-1891 | Received 01 Apr 2022, Accepted 23 May 2022, Published online: 24 Jun 2022

References

  • Abbasi S, Yousefi G, Tamaddon AM, Firuzi O. (2021). Paclitaxel-loaded polypeptide-polyacrylamide nanomicelles overcome drug-resistance by enhancing lysosomal membrane permeability and inducing apoptosis. J Biomed Mater Res A 109:18–30. doi: https://doi.org/10.1002/jbm.a.37003.
  • Adrianzen Herrera D, Ashai N, Perez-Soler R, Cheng H. (2019). Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: an evaluation of the clinical evidence. Expert Opin Pharmacother 20:95–102. doi: https://doi.org/10.1080/14656566.2018.1546290.
  • Alemi A, Zavar Reza J, Haghiralsadat F, et al. (2018). Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J Nanobiotechnology 16:28. doi: https://doi.org/10.1186/s12951-018-0351-4.
  • Ashrafizadeh M, Zarrabi A, Hashemi F, et al. (2020). Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci 256:117984. doi: https://doi.org/10.1016/j.lfs.2020.117984.
  • Attia YM, El-Kersh DM, Ammar RA, et al. (2020). Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chem Biol Interact 315:108865. doi: https://doi.org/10.1016/j.cbi.2019.108865.
  • Baghbani F, Moztarzadeh F. (2017). Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces 153:132–40. doi: https://doi.org/10.1016/j.colsurfb.2017.01.051.
  • Bava SV, Sreekanth CN, Thulasidasan AK, et al. (2011). Akt is upstream and MAPKs are downstream of NF-κB in paclitaxel-induced survival signaling events, which are down-regulated by curcumin contributing to their synergism. Int J Biochem Cell Biol 43:331–41. doi: https://doi.org/10.1016/j.biocel.2010.09.011.
  • Behbahani ES, Ghaedi M, Abbaspour M, Rostamizadeh K. (2017). Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrason Sonochem 38:271–80. doi: https://doi.org/10.1016/j.ultsonch.2017.03.013.
  • Berrak Ö, Akkoç Y, Arısan ED, et al. (2016). The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells. Biomed Pharmacother 77:150–60. doi: https://doi.org/10.1016/j.biopha.2015.12.007.
  • Calaf GM, Ponce-Cusi R, Carrión F. (2018). Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep 40:2381–8. doi: https://doi.org/10.3892/or.2018.6603.
  • Chen H, Huang S, Wang H, et al. (2021). Preparation and characterization of paclitaxel palmitate albumin nanoparticles with high loading efficacy: an in vitro and in vivo anti-tumor study in mouse models. Drug Deliv 28:1067–79. doi: https://doi.org/10.1080/10717544.2021.1921078.
  • Cui F, Li Y, Zhou S, et al. (2013). A comparative in vitro evaluation of self-assembled PTX-PLA and PTX-MPEG-PLA nanoparticles. Nanoscale Res Lett 8:301. doi: https://doi.org/10.1186/1556-276x-8-301.
  • Cui Y, Zhang M, Zeng F, et al. (2016). Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 8:32159–69. doi: https://doi.org/10.1021/acsami.6b10175.
  • Ding Y, Peng Y, Deng L, et al. (2017). Gamma-tocotrienol reverses multidrug resistance of breast cancer cells with a mechanism distinct from that of atorvastatin. J Steroid Biochem Mol Biol 167:67–77. doi: https://doi.org/10.1016/j.jsbmb.2016.11.009.
  • Endo H, Inoue I, Masunaka K, et al. (2020). Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci Biotechnol Biochem 84:2440–7. doi: https://doi.org/10.1080/09168451.2020.1808443.
  • Feng X, Pi C, Fu S, et al. (2020). Combination of curcumin and paclitaxel liposomes exhibits enhanced cytotoxicity towards A549/A549-T cells and unaltered pharmacokinetics. J Biomed Nanotechnol 16:1304–13. doi: https://doi.org/10.1166/jbn.2020.2969.
  • Ferlay J, Colombet M, Soerjomataram I, et al. (2021). Cancer statistics for the year 2020: an overview. Int J Cancer 149:778–9. doi: https://doi.org/10.1002/ijc.33588.
  • Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. (2014). Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 90:197–207. doi: https://doi.org/10.1016/j.bcp.2014.05.011.
  • Guo P, He Y, Xu T, et al. (2020). Co-delivery system of chemotherapy drugs and active ingredients from natural plants: a brief overview of preclinical research for cancer treatment. Expert Opin Drug Deliv 17:665–75. doi: https://doi.org/10.1080/17425247.2020.1739647.
  • Hong CA, Nam YS. (2014). Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics 4:1211–32. doi: https://doi.org/10.7150/thno.8491.
  • Hope JM, Lopez-Cavestany M, Wang W, et al. (2019). Activation of Piezo1 sensitizes cells to TRAIL-mediated apoptosis through mitochondrial outer membrane permeability. Cell Death Dis 10:837. doi: https://doi.org/10.1038/s41419-019-2063-6.
  • Hwang SJ, Park HG, Park Y, Lee HJ. (2016). An α-quaternary chiral latam derivative, YH-304 as a novel broad-spectrum anticancer agent. Int J Oncol 49:2480–6. doi: https://doi.org/10.3892/ijo.2016.3726.
  • Ippen FM, Grosch JK, Subramanian M, et al. (2019). Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases. Neuro Oncol 21:1401–11. doi: https://doi.org/10.1093/neuonc/noz105.
  • Jiménez-López J, El-Hammadi MM, Ortiz R, et al. (2019). A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol Res 141:451–65. doi: https://doi.org/10.1016/j.phrs.2019.01.013.
  • Joseph MM, Ramya AN, Vijayan VM, et al. (2020). Targeted theranostic nano vehicle endorsed with self-destruction and immunostimulatory features to circumvent drug resistance and wipe-out tumor reinitiating cancer stem cells. Small 16:e2003309. doi: https://doi.org/10.1002/smll.202003309.
  • Koroleva M, Portnaya I, Mischenko E, et al. (2022). Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability. J Colloid Interface Sci 610:61–9. doi: https://doi.org/10.1016/j.jcis.2021.12.010.
  • Lee WH, Loo CY, Traini D, Young PM. (2020). Development and evaluation of paclitaxel and curcumin dry powder for inhalation lung cancer treatment. Pharmaceutics 13:9. doi: https://doi.org/10.3390/pharmaceutics13010009.
  • Li LM. Construction and cytotoxicity evaluation of CU-PTX synergistic drug delivery system. Master Thesis. Luzhou: School of Pharmacy, Southwest Medical University. 2019.
  • Li XQ, Ren J, Wang Y, et al. (2021). Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cell Oncol (Dordr) 44:135–50. doi: https://doi.org/10.1007/s13402-020-00557-x.
  • Liu J, Cheng H, Han L, et al. (2018). Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther 12:3199–209. doi: https://doi.org/10.2147/dddt.S172199.
  • Liu Z, Zhu YY, Li ZY, Ning SQ. (2016). Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncol Lett 12:3944–8. doi: https://doi.org/10.3892/ol.2016.5192.
  • Madan J, Pandey RS, Jain V, et al. (2013). Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine 9:492–503. doi: https://doi.org/10.1016/j.nano.2012.10.003.
  • Maeda H, Bharate GY, Daruwalla J. (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–19. doi: https://doi.org/10.1016/j.ejpb.2008.11.010.
  • Maritim S, Boulas P, Lin Y. (2021). Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm 592:120051. doi: https://doi.org/10.1016/j.ijpharm.2020.120051.
  • Matsumura Y, Maeda H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–92.
  • Mayer IA, Arteaga CL. (2016). The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med 67:11–28. doi: https://doi.org/10.1146/annurev-med-062913-051343.
  • Mayer LD, Janoff AS. (2007). Optimizing combination chemotherapy by controlling drug ratios. Mol Interv 7:216–23. doi: https://doi.org/10.1124/mi.7.4.8.
  • Miller AV, Hicks MA, Nakajima W, et al. (2013). Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor. PLoS One 8:e60685. doi: https://doi.org/10.1371/journal.pone.0060685.
  • Monisha J, Padmavathi G, Roy NK, et al. (2016). NF-κB blockers gifted by mother nature: prospectives in cancer cell chemosensitization. Curr Pharm Des 22:4173–200. doi: https://doi.org/10.2174/1381612822666160609110231.
  • Mu YT, Feng HH, Yu JQ, et al. (2020). Curcumin suppressed proliferation and migration of human retinoblastoma cells through modulating NF-κB pathway. Int Ophthalmol 40:2435–40. doi: https://doi.org/10.1007/s10792-020-01406-4.
  • Nielsen FC, Orskov C, Haselbacher G, et al. (1994). Insulin-like growth factor II mRNA, peptides, and receptors in a thoracopulmonary malignant small round cell tumor. Cancer 73:1312–9. doi: https://doi.org/10.1002/1097-0142(19940215)73:4<1312::AID-CNCR2820730429>3.0.CO;2-D.
  • Qiao Y, Wang C, Liu B, et al. (2019). Enhanced endocytic and ph-sensitive poly(malic acid) micelles for antitumor drug delivery. J Biomed Nanotechnol 15:28–41. doi: https://doi.org/10.1166/jbn.2019.2673.
  • Quispe-Soto ET, Calaf GM. (2016). Effect of curcumin and paclitaxel on breast carcinogenesis. Int J Oncol 49:2569–77. doi: https://doi.org/10.3892/ijo.2016.3741.
  • Ruiz de Porras V, Bystrup S, Martínez-Cardús A, et al. (2016). Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-chemokine/NF-κB signalling pathway. Sci Rep 6:24675. doi: https://doi.org/10.1038/srep24675.
  • Sung H, Ferlay J, Siegel RL, et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 71:209–49. doi: https://doi.org/10.3322/caac.21660.
  • Tai K, Rappolt M, Mao L, et al. (2020). Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem 326:126973. doi: https://doi.org/10.1016/j.foodchem.2020.126973.
  • Tang X, Zhou S, Tao X, et al. (2017). Targeted delivery of docetaxel via Pi-Pi stacking stabilized dendritic polymeric micelles for enhanced therapy of liver cancer. Mater Sci Eng C Mater Biol Appl 75:1042–8. doi: https://doi.org/10.1016/j.msec.2017.02.098.
  • Tao Y, Yang F, Meng K, et al. (2019). Exploitation of enrofloxacin-loaded docosanoic acid solid lipid nanoparticle suspension as oral and intramuscular sustained release formulations for pig. Drug Deliv 26:273–80. doi: https://doi.org/10.1080/10717544.2019.1580798.
  • Tardi P, Johnstone S, Harasym N, et al. (2009). In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 33:129–39. doi: https://doi.org/10.1016/j.leukres.2008.06.028.
  • Utreja P, Jain S, Tiwary AK. (2011). Localized delivery of paclitaxel using elastic liposomes: formulation development and evaluation. Drug Deliv 18:367–76. doi: https://doi.org/10.3109/10717544.2011.558527.
  • Valdes SA, Alzhrani RF, Rodriguez A, et al. (2019). A solid lipid nanoparticle formulation of 4-(N)-docosahexaenoyl 2', 2'-difluorodeoxycytidine with increased solubility, stability, and antitumor activity. Int J Pharm 570:118609. doi: https://doi.org/10.1016/j.ijpharm.2019.118609.
  • Wang D, Wang Y, Zhao G, et al. (2019). Improving systemic circulation of paclitaxel nanocrystals by surface hybridization of DSPE-PEG2000. Colloids Surf B Biointerfaces 182:110337. doi: https://doi.org/10.1016/j.colsurfb.2019.06.066.
  • Xie J, Li Y, Song L, et al. (2017). Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems. Drug Deliv 24:707–19. doi: https://doi.org/10.1080/10717544.2017.1303855.
  • Xu C, Xu L, Han R, et al. (2021). Blood circulation stable doxorubicin prodrug nanoparticles containing hydrazone and thioketal moieties for antitumor chemotherapy. Colloids Surf B Biointerfaces 201:111632. doi: https://doi.org/10.1016/j.colsurfb.2021.111632.
  • Yan C, Chen C, Zhang XJ, et al. (2020). Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm Sin B 10:1106–21. doi: https://doi.org/10.1016/j.apsb.2019.10.011.
  • Yuan Z, Jiang H, Zhu X, et al. (2017). Ginsenoside Rg3 promotes cytotoxicity of paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother 89:227–32. doi: https://doi.org/10.1016/j.biopha.2017.02.038.
  • Zakaria N, Mohd Yusoff N, Zakaria Z, et al. (2018). Inhibition of NF-κB signaling reduces the stemness characteristics of lung cancer stem cells. Front Oncol 8:166. doi: https://doi.org/10.3389/fonc.2018.00166.
  • Zhang J, Li J, Shi Z, et al. (2017). pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater 58:349–64. doi: https://doi.org/10.1016/j.actbio.2017.04.029.
  • Zhang J, Liang H, Yao H, et al. (2019). The preparation, characterization of Lupeol PEGylated liposome and its functional evaluation in vitro as well as pharmacokinetics in rats. Drug Dev Ind Pharm 45:1052–60. doi: https://doi.org/10.1080/03639045.2019.1569038.
  • Zhang M, Li M, Du L, et al. (2020). Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int J Pharm 578:119177. doi: https://doi.org/10.1016/j.ijpharm.2020.119177.
  • Zhang R, Lu M, Zhang Z, et al. (2016). Resveratrol reverses P-glycoprotein-mediated multidrug resistance of U2OS/ADR cells by suppressing the activation of the NF-κB and p38 MAPK signaling pathways. Oncol Lett 12:4147–54. doi: https://doi.org/10.3892/ol.2016.5136.
  • Zhao G, Long L, Zhang L, et al. (2017). Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep 7:3383. doi: https://doi.org/10.1038/s41598-017-03111-2.
  • Zhou J, Sun M, Jin S, et al. (2019). Combined using of paclitaxel and salinomycin active targeting nanostructured lipid carriers against non-small cell lung cancer and cancer stem cells. Drug Deliv 26:281–9. doi: https://doi.org/10.1080/10717544.2019.1580799.
  • Zhou Q, Zhang L, Yang T, Wu H. (2018). Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed 13:2921–42. doi: https://doi.org/10.2147/ijn.S158696.
  • Zhu F, Tan G, Zhong Y, et al. (2019). Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. J Nanobiotechnol 17:44. doi: https://doi.org/10.1186/s12951-019-0473-3.