1,436
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels

, , , , , & show all
Pages 2086-2099 | Received 10 May 2022, Accepted 13 Jun 2022, Published online: 15 Jul 2022

References

  • Aerts CA, Verraedt E, Depla A, et al. (2010). Potential of amorphous microporous silica for ibuprofen controlled release. Int J Pharm 397:84–91.
  • Ag Seleci D, Seleci M, Walter J-G, et al. (2016). Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater 2016:1–13.
  • Alnaief M, Smirnova I. (2010). Effect of surface functionalization of silica aerogel on their adsorptive and release properties. J Non-Cryst Solids 356:1644–9.
  • Bahl D, Bogner RH. (2006). Amorphization of Indomethacin by co-grinding with Neusilin US2: amorphization kinetics, physical stability and mechanism. Pharm Res 23:2317–25.
  • Bardestani R, Patience GS, Kaliaguine S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97:2781–91.
  • Barrett EP, Joyner LG, Halenda PP. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–80.
  • Barzegar-Jalali M, Valizadeh H, Shadbad M-RS, et al. (2010). Cogrinding as an approach to enhance dissolution rate of a poorly water-soluble drug (gliclazide). Powder Technol 197:150–8.
  • Bergmann A, Fritz G, Glatter O. (2000). Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr 33:1212–6.
  • Bhargava C, Dürkop H, Zhao X, et al. (2017). Targeted dianthin is a powerful toxin to treat pancreatic carcinoma when applied in combination with the glycosylated triterpene SO1861. Mol Oncol 11:1527–43.
  • Boldyrev V. (1993). Mechanochemistry and mechanical activation of solids. Solid State Ionics 63–65:537–43.
  • Brunauer S, Emmett PH, Teller E. (1938). Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–19.
  • Colombo I, Grassi G, Grassi M. (2009). Drug mechanochemical activation. J Pharm Sci 98:3961–86.
  • Craievich A, Aegerter MA, dos Santos DI, et al. (1986). A SAXS study of silica aerogels. J Non-Cryst Solids 86:394–406.
  • Diab R, Canilho N, Pavel IA, et al. (2017). Silica-based systems for oral delivery of drugs, macromolecules and cells. Adv Colloid Interface Sci 249:346–62.,
  • Gabor F, Fillafer C, Neutsch L, et al. (2010). Drug delivery (Ed.: M. Schäfer-Korting), 197, Berlin, Heidelberg: Springer.
  • García-González CA, Sosnik A, Kalmár J, et al. (2021). Aerogels in drug delivery: from design to application. J Control Release 332:40–63.
  • Glatter O. (1979). The interpretation of real-space information from small-angle scattering experiments. J Appl Crystallogr 12:166–75.
  • Gorle BSK, Smirnova I, McHugh MA. (2009). Adsorption and thermal release of highly volatile compounds in silica aerogels. J Supercritic Fluid 48:85–92.
  • Grobelny P, Kazakevich I, Zhang D, Bogner R. (2015). Amorphization of itraconazole by inorganic pharmaceutical excipients: comparison of excipients and processing methods. Pharm Dev Technol 20:118–27.
  • Guenther U, Smirnova I, Neubert RHH. (2008). Hydrophilic silica aerogels as dermal drug delivery systems-dithranol as a model drug. Eur J Pharm Biopharm 69:935–42.
  • Gulati N, Gupta H. (2011). Parenteral drug delivery: a review. Recent Pat Drug Deliv Formul 5:133–45.
  • Hentzschel CM, Alnaief M, Smirnova I, et al. (2012). Tableting properties of silica aerogel and other silicates. Drug Dev Ind Pharm 38:462–7.
  • Hilden LR, Morris KR. (2004). Physics of amorphous solids. J Pharm Sci 93:3–12.
  • Hüsing N, Schubert U, Mezei R, et al. (1999). Formation and Structure of Gel Networks from Si(OEt)4/(MeO)3 Si(CH2)3 NR’ 2 Mixtures (NR’ 2 = NH2 or NHCH2 CH2 NH2). Chem Mater 11:451–7.
  • Hussain A, Smith G, Khan KA, et al. (2018). Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients. Eur J Pharm Sci 123:395–403.
  • Innocenzi P. (2019). The sol-to-gel transition, 2nd ed., Cham: Springer Briefs in Materials, Springer International Publishing.
  • Job N, Théry A, Pirard R, et al. (2005). Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–94.
  • Kockmann A, Hesselbach J, Zellmer S, et al. (2015). Facile surface tailoring of metal oxide nanoparticles via a two-step modification approach. RSC Adv 5:60993–9.
  • Lipinski CA. (2000). Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Method 44:235–49.
  • Lipp R. (2013). The innovator pipeline: bioavailability challenges and advanced oral drug delivery opportunities. Pharmaceut Rev 16:10–6.
  • Liu H, Sha W, Cooper AT, Fan M. (2009). Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids Surf, A 347:38–44.
  • Marcinko S, Fadeev AY. (2004). Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 20:2270–3.
  • Marques MRC, Choo Q, Ashtikar M, et al. (2019). Nanomedicines – tiny particles and big challenges. Adv Drug Deliv Rev 151–152:23–43.
  • Maurer V, Altin S, Ag Seleci D, et al. (2021). In-vitro application of magnetic hybrid niosomes: targeted siRNA-delivery for enhanced breast cancer therapy. Pharmaceutics 13:394.
  • Maurer V, Zarinwall A, Wang Z, et al. (2022). All-in-one superparamagnetic and SERS-active niosomes for dual-targeted in vitro detection of breast cancer cells. Sens Diagn 1:469–84.
  • Melzig S, Finke JH, Schilde C, Kwade A. (2018a). Formation of long-term stable amorphous ibuprofen nanoparticles via antisolvent melt precipitation (AMP). Eur J Pharm Biopharm 131:224–31.
  • Melzig S, Niedbalka D, Schilde C, Kwade A. (2018b). Spray drying of amorphous ibuprofen nanoparticles for the production of granules with enhanced drug release. Colloids Surf, A 536:133–41.
  • Michalchuk AAL, Tumanov IA, Boldyreva EV. (2013). Complexities of mechanochemistry: elucidation of processes occurring in mechanical activators via implementation of a simple organic system. CrystEngComm 15:6403.
  • Michalchuk AAL, Tumanov IA, Drebushchak VA, Boldyreva EV. (2014). Advances in elucidating mechanochemical complexities via implementation of a simple organic system. Faraday Discuss 170:311–35.
  • Mohammadian M, Jafarzadeh Kashi TS, Erfan M, Soorbaghi FP. (2018). Synthesis and characterization of silica aerogel as a promising drug carrier system. J Drug Delivery Sci Technol 44:205–12.
  • Murillo-Cremaes N, López-Periago AM, Saurina J, et al. (2013). Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercritic Fluid 73:34–42.
  • Mužík J, Lizoňová D, Zadražil A, Štěpánek F. (2020). Drug amorphisation by fluid bed hot-melt impregnation of mesoporous silica carriers. Chem Eng J 392:123754.
  • Patel AK, Bajpai R, Keller JM. (2014). On the crystallinity of PVA/palm leaf biocomposite using DSC and XRD techniques. Microsyst Technol 20:41–9.
  • Paul W, Sharma CP (2020). (Ed. C. P. Sharma), Woodhead publishing series in Biomaterials, biointegration of medical implant materials, 2nd ed., Cambridge, UK: Woodhead Publishing, 333–373.
  • Pauw BR, Smith AJ, Snow T, et al. (2017). The modular small-angle X-ray scattering data correction sequence. J Appl Crystallogr 50:1800–11.
  • Pfeiffer P, Mortensen JP, Bjerregaard B, et al. (2006). Patient preference for oral or intravenous chemotherapy: a randomised cross-over trial comparing capecitabine and Nordic fluorouracil/leucovorin in patients with colorectal cancer. Eur J Cancer 42:2738–43.
  • Pujari SP, Scheres L, Marcelis ATM, Zuilhof H. (2014). Kovalente Oberflächenmodifikationen von Oxiden. Angew Chem 126:6438–74.
  • Qian KK, Suib SL, Bogner RH. (2011). Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 2: amorphization capacity and mechanisms of interaction. J Pharm Sci 100:4674–86.
  • Rambhia KJ, Ma PX. (2015). Controlled drug release for tissue engineering. J Control Release 219:119–28.
  • Rao AP, Rao AV, Pajonk GM. (2007). Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl Surf Sci 253:6032–40.
  • Rengarajan GT, Enke D, Steinhart M, Beiner M. (2008). Stabilization of the amorphous state of pharmaceuticals in nanopores. J Mater Chem 18:2537.
  • Sastry SV, Nyshadham JR, Fix JA. (2000). Recent technological advances in oral drug delivery – a review. J. A. Fix, Pharmaceutical Science & Technology Today 3:138–45.
  • Siewert M. (1996). FIP guidelines for dissolution testing of solid oral products (Final Draft, 1995). Drug Inform J 30:1071–84.
  • Sing KSW. (1998). Adsorption methods for the characterization of porous materials. Adv Colloid Interface Sci 76–77:3–11.
  • Singh D, Bedi N, Tiwary AK. (2018). Enhancing solubility of poorly aqueous soluble drugs: critical appraisal of techniques. J Pharm Investig 48:509–26.
  • Smirnova I, Mamic J, Arlt W. (2003). Adsorption of drugs on silica aerogels. Langmuir 19:8521–5.
  • Smirnova I, Suttiruengwong S, Arlt W. (2004a). Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60.
  • Smirnova I, Suttiruengwong S, Arlt W. (2005). Aerogels: tailor-made carriers for immediate and prolonged drug release. KONA 23:86–97.
  • Smirnova I, Suttiruengwong S, Seiler M, Arlt W. (2004b). Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9:443–52.
  • Steiner D, Emmendörffer JF, Bunjes H. (2021). Orodispersible films: a delivery platform for solid lipid nanoparticles? Pharmaceutics 13:2162.
  • Suresh A, Gonde S, Mondal PK, et al. (2020). Improving solubility and intrinsic dissolution rate of ofloxacin API through salt formation via mechanochemical synthesis with diphenic acid. J Mol Struct 1221:128806.
  • Uejo F, Limwikrant W, Moribe K, Yamamoto K. (2013). Dissolution improvement of fenofibrate by melting inclusion in mesoporous silica. Asian J Pharm Sci 8:329–35.
  • Ulker Z, Erkey C. (2014). An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63.
  • Veres P, López-Periago AM, Lázár I, et al. (2015). Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm 496:360–70.
  • Wewers M, Czyz S, Finke JH, et al. (2020). Influence of formulation parameters on redispersibility of naproxen nanoparticles from granules produced in a fluidized bed process. Pharmaceutics 12:363.
  • Williams RO III, Watts AB, Miller DA (Ed.), (2016). AAPS advances in the pharmaceutical sciences series. 2nd ed., Vol. 22. Cham, Switzerland: Springer.
  • Zarinwall A, Asadian-Birjand M, Seleci DA, et al. (2021a). Magnetic nanoparticle-based dianthin targeting for controlled drug release using the endosomal escape enhancer SO1861. Nanomaterials 11:1057.
  • Zarinwall A, Waniek T, Finke, B, et al. (2021b). Particle surface modification. In: Acting principles of nano-scaled matrix additives for composite structures (Ed: M. Sinapius, G. Ziegmann), Cham: Springer.
  • Zarinwall A, Waniek T, Saadat R, et al. (2021c). Comprehensive characterization of APTES surface modifications of hydrous boehmite nanoparticles. Langmuir 37:171–9.