1,804
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced transdermal insulin basal release from silk fibroin (SF) hydrogels via iontophoresis

, & ORCID Icon
Pages 2234-2244 | Received 20 May 2022, Accepted 27 Jun 2022, Published online: 18 Jul 2022

References

  • Alexander A, Dwivedi S, Giri TK, et al. (2012). Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164:26–40.
  • Alkilani AZ, McCrudden MTC, Donnelly RF. (2015). Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7:438–70.
  • Bashyal S, Shin CY, Hyun SM, et al. (2020). Preparation, characterization, and in vivo pharmacokinetic evaluation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogels for transdermal delivery of donepezil HCl. Pharmaceutics 12:270.
  • Chaudhry ZW, Gannon MC, Nuttall FQ. (2006). Stability of body weight in type 2 diabetes. Diabete Care 29:493–7.
  • Chen H, Zhu H, Zheng J, et al. (2009). Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release 139:63–72.
  • Chowdhury AM, Khan RI, NirzhorJabin SSR, et al. (2017). A novel approach in adjustment of total daily insulin dosage for type 2 diabetes patients using a fuzzy logic based system. J Innov Pharm Biol Sci 4:65–72.
  • Chwedoruk W, Malka I, Bozycki L, et al. (2014). On the heat stability of amyloid-based biological activity: insights from thermal degradation of insulin fibrils. PLoS ONE 9:e86320.
  • Correa EE, Lopera DOG, Restrepo SG, et al. (2020). Effective sericin fibroin separation from Bombyx mori silkworms fibers and low cost salt removal from fibroin solution. Rev Fac Ing. Univ Antioquia 94:97–101.
  • Darge HF, Andrgie AT, Hanurry EY, et al. (2019). Localized controlled release of bevacizumab and doxorubicin by thermosensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 572:118799.
  • Dwivedi N, Arunagirinathan MA, Sharma S, Bellare J. (2010). Silica-coated liposomes for insulin delivery. J Nanomater 2010:652048.
  • Higuchi T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50:874–5.
  • Hu Y, Zhang Q, You R, et al. (2012). The relationship between secondary structure. Adv Mater Sci Eng 2012:1–5.
  • Huang D, Sun M, Bu Y, et al. (2019). Microcapsule- embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium. J Mater Chem B 7:2330–7.
  • Johari N, Moroni L, Samadikuchaksaraei A. (2020). Tuning the conformation and mechanical properties of silk fibroin hydrogels. Eur Polym J 134:109842.
  • Kapoor S, Kundu SC. (2015). Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater 31:17–32.
  • Kim MH, Park WH. (2016). Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility. Int J Nanomed 11:2978.
  • Knopp JL, Pearson LH, Chase JG. (2019). Insulin units and conversion factors: a story of truth, boots, and faster half-truths. J Diabetes Sci Technol 13:597–600.
  • Korsmeyer RW, Gurny R, Doelker E, et al. (1983). Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35.
  • Kuang D, Jiang F, Wu F, et al. (2019). Highly elastomeric photocurable silk hydrogels. Int J Biol Macromol 134:838–45.
  • Kuang D, Wu F, Yin Z, et al. (2018). Silk fibroin/polyvinyl pyrrolidone interpenetrating polymer network hydrogels. Polymers 10:153.
  • Lammel A, Hu X, Park SH, et al. (2010). Controlling silk fibroin particle features for drug delivery. Biomaterials 31:4583–91.
  • Langer RS, Peppas NA. (1981). Present and future applications of biomaterials in controlled drug release systems. Biomaterials 2:201–14.
  • Li J, Mooney DJ. (2016). Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:1–37.
  • Lim KS. (2015). Silk hydrogels for tissue engineering. Winter Solstic 21:1–7.
  • Lougheed WD, Fischer U, Perlman K, et al. (1981). A physiological solvent for crystalline insulin. Diabetologia 20:51–3.
  • Lougheed WD, Woulfe-Flanagan H, Clement JR, Albisser AM. (1980). Insulin aggregation in artificial delivery systems. Diabetologia 19:1–19.
  • Magos M, Tapia J, López M, et al. (2020). Cytotoxicity and UV light absorption in biopolymeric membranes from native vegetation of mexico. Appl Sci 10:4995.
  • Maji P, Gandhi A, J S, Maji N. (2013). Preparation and characterization of maleic anhydride cross-linked chitosan-polyvinyl alcohol hydrogel matrix transdermal patch. J PharmaSciTech 2:62–7.
  • Mallawarachchi S, Mahadevan A, Gejji V, Fernando S. (2019). Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv Transl Res 9:783–94.
  • Manno M, Craparo EF, Martorana V, et al. (2006). Kinetics of insulin aggregation: disentanglement of amyloid fibrillation from large-size cluster formation. Biophys J 90:4585–91.
  • Mansoor S, Kondiah PPD, Choonara YE, Pillay V. (2019). Polymer-based nanoparticle strategies. Polymers 11:1380.
  • Mavondo GAA, Tagumirwa MC. (2016). Asiatic acid-pectin hydrogel matrix patch transdermal delivery system influences parasitaemia suppression and inflammation reduction in P. berghei murine malaria infected sprague–dawley rats. Asian Pac J Trop Med 9:1172–1180.
  • Mongkolkitikul S, Paradee N, Sirivat A. (2017). Electrically controlled release of ibuprofen from conductive poly(3-methoxydiphenylamine)/crosslinked pectin hydrogel. Eur J Pharm Sci 112:20–7.
  • Murthy SN. (2012). Transdermal drug delivery: approaches and significance. RRTD 1:1–2.
  • Nadendla K, Friedman SH. (2017). Light control of protein solubility through isoelectric point modulation. J Am Chem Soc 49:17861–9.
  • Narita C, Okahisa Y, Wataoka I, Yamada K. (2021). Characterization of ground silk fibroin through comparison of nanofibroin and higher order structures. ACS Omega 5:22786–−92.
  • Niswender KD. (2011). Basal insulin: physiology, pharmacology, and clinical implications. Postgrad Med 123:17–26.
  • Oktay S, Alemdar N. (2018). Electrically controlled release of 5-fluorouracil from conductive gelatin methacryloyl-based hydrogels. J Appl Polym Sci 136:46914.
  • Paradee N, Thanokiang J, Sirivat A. (2021). Conductive poly(2-ethylaniline) dextran-based hydrogels for electrically controlled diclofenac release. Mater Sci Eng C 118:111346.
  • Park HJ, Lee JS, Lee OJ, Sheikh FA, et al. (2014). Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering. Macromol Res 22:592–9.
  • Patarroyo JL, Florez-Rojas JS, Pradilla D, et al. (2020). Formulation and characterization of gelatin-based hydrogels for the encapsulation of kluyveromyces lactis—applications in packed-bed reactors and probiotics delivery in humans. Polymers 12:1287.
  • Peppas NA, Merrill EW. (1977). Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–70.
  • Peppas NA, Wright SL. (1996). Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks. Macromolecules 29:8798–804.
  • Pillai O, Kumar N, Dey CS, et al. (2003). Transdermal iontophoresis of insulin. Part 1: A study on the issues associated with the use of platinum electrodes on rat skin. J Pharm Pharmacol 55:1505–1513.
  • Pillai O, Nair V, Panchagnula R. (2004). Transdermal iontophoresis of insulin: IV. Influence of chemical enhancers. Int J Pharm 269:109–20.
  • Pillai O, Panchagnula R. (2004). Transdermal iontophoresis of insulin: VI. Influence of pretreatment with fatty acids on permeation across rat skin. Skin Pharmacol Physiol 17:289–97.
  • Quicenoa NJ. Lópezb CA, Osorioc AR (2017). Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Procedia Eng 200:384–8.
  • Radu IC, Biru IE, Damian CM, et al. (2019). Grafting versus crosslinking of silk fibroin-g-PNIPAM via tyrosine-NIPAM bridges. Molecules 24:4096.
  • Ruangmak K, Paredee N, Niamlang S, et al. (2021). Electrically controlled transdermal delivery of naproxen and indomethacin from porous cis-1,4-polyisoprene matrix. J Biomed Mater Res Part B: Appl Biomater 110:1–11.
  • Schacht EH. (2004). Polymer chemistry and hydrogel systems. J Phys: Conf Ser 3:22–8.
  • Sen M, Uzun C, Guven O. (2000). Controlled release of terbinafine hydrochloride from pH sensitive poly(acrylamide/maleic acid) hydrogels. Int J Pharm 203:149–57.
  • Shah RB, Patel M, Maahs DM, Shah VN. (2016). Insulin delivery methods: past, present and future. Int J Pharma Investig 6:1–9.
  • Srinivasan V, Higuchi WI, Sims SM, et al. (1987). Trandermal iontophoretic drug delivery: mechanistic analysis and application to polypeptide delivery. J Pharm Sci 78:370–5.
  • Szunerits S, Boukherroub R. (2018). Heat: A highly efficient skin enhancer for transdermal drug delivery. Front Bioeng Biotechnol 6:1–13.
  • Tari K, Khamoushian S, Madrakian T, et al. (2021). Controlled transdermal iontophoresis of insulin from water-soluble polypyrrole nanoparticles: an in vitro study. IJMS 22:12479.
  • Tokumoto S, Higo N, Sugibayashi K. (2006). Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. Int J Pharm 326:13–9.
  • Varkey A, Venugopal E, Sugumaran P, et al. (2015). Impact of silk fibroin-based scaffold structures on human osteoblast MG63 cell attachment and proliferation. Int J Nanomed 10:43–51.
  • Whittaker JL, Choudhury NR, Dutta NK, Zannettino A. (2014). Facile and rapid ruthenium mediated photocrosslinking of Bombyx mori silk fibroin. J Mater Chem B 2:6259–70.
  • Wu N, Yu H, Sun M, et al. (2019). Investigation on the structure and mechanical properties of highly tunable elastomeric silk fibroin hydrogels cross-linked by γ‑ray radiation. ACS Appl Bio Mater 3:721–34.
  • Yang J, Li Y, Ye R, et al. (2020). Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsyst Nanoeng 6:112.
  • Ye S, Wang C, Liu X, et al. (2006). New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly. J Control Release 112:79–87.
  • Zhang H, Li LL, Dai F, et al. (2012). Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. J Transl Med 10:117.
  • Zhang L, Jiang H, Zhu W, et al. (2008). Improving the stability of insulin in solutions containing intestinal proteases in vitro. Int J Mol Sci 9:2376–87.
  • Zhang Y, Yu J, Kahkoska AR, et al. (2019). Advances in transdermal insulin delivery. Adv Drug Deliv Rev 139:51–70.
  • Zhang Z, Xin P, Ou Q, et al. (2018). Poly(ester amide)-based hybrid hydrogels for efficient transdermal insulin delivery. J Mater Chem B 6:6723–30.
  • Zheng H, Duan B, Xie Z, et al. (2020). Inventing a facile method to construct Bombyx mori (B. mori) silk fibroin nanocapsules for drug delivery. RSC Adv 10:28408–14.