1,656
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics

&
Pages 2644-2657 | Received 24 Jun 2022, Accepted 25 Jul 2022, Published online: 10 Aug 2022

References

  • Abdelwahed W, Degobert G, Stainmesse S, Fessi H. (2006). Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58:1688–713.
  • Agency EM. Summary of product characteristics: Onpattro 2 mg/mL concentrate for solution for infusion. 2018.
  • Akinc A, Maier MA, Manoharan M, et al. (2019). The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol 14:1084–7.
  • Alnylam Pharmaceuticals I. (2018). Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic, ONPATTRO™(patisiran) for the Treatment of the Polyneuropathy of Hereditary Transthyretin-Mediated Amyloidosis in Adults. Cambridge (MA): Alnylam Pharmaceuticals Press.
  • Alzorqi I, Ketabchi MR, Sudheer S, Manickam S. (2016). Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant β-d-glucan polysaccharides. Ultrason Sonochem 31:71–84.
  • Bakhtiar A, Neah AS, Ng KY, Chowdhury EH. (2022). In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery. J Pharm Investig 52:95–107.
  • Ball RL, Bajaj P, Whitehead KA. (2017). Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine 12:305–15.
  • Blakney AK, McKay PF, Yus BI, et al. (2019). Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther 26:363–72.
  • Buyens K, Demeester J, De Smedt SS, Sanders NN. (2009). Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes. Langmuir 25:4886–91.
  • Chae Y-J, Chang J-E, Lee M-K, et al. (2022). Regulation of drug transporters by microRNA and implications in disease treatment. J Pharm Investig 52:23–5.
  • Cholakova D, Glushkova D, Tcholakova S, Denkov N. (2020). Nanopore and nanoparticle formation with lipids undergoing polymorphic phase transitions. ACS Nano 14:8594–604.
  • Chuesiang P, Siripatrawan U, Sanguandeekul R, et al. (2018). Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: impact of oil phase composition and surfactant concentration. J Colloid Interface Sci 514:208–16.
  • Crommelin DJ, Anchordoquy TJ, Volkin DB, et al. (2021). Addressing the cold reality of mRNA vaccine stability. J Pharm Sci 110:997–1001.
  • Cui L, Pereira S, Sonzini S, et al. (2022). Development of a high-throughput platform for screening lipid nanoparticles for mRNA delivery. Nanoscale 14:1480–91.
  • Cui L. (2015). Lipopolyplexes containing bifunctional peptides for DNA and siRNA delivery: Doctoral dissertation. England, UK: King’s College London.
  • Cun D, Foged C, Yang M, et al. (2010). Preparation and characterization of poly (DL-lactide-co-glycolide) nanoparticles for siRNA delivery. Int J Pharm 390:70–5.
  • Denkov N, Tcholakova S, Lesov I, et al. (2015). Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling. Nature 528:392–5.
  • Evans RK, Xu Z, Bohannon KE, et al. (2000). Evaluation of degradation pathways for plasmid DNA in pharmaceutical formulations via accelerated stability studies. J Pharm Sci 89:76–87.
  • Evers MJ, Kulkarni JA, van der Meel R, et al. (2018). State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods 2:1700375.
  • FDA. (2017). FDA ONPATTRO (patisiran) Lipid Complex Injection Addendum to Drug Product Quality Review [WWW Document]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000ChemR.pdf.
  • Forigua A, Kirsch RL, Willerth SM, Elvira KS. (2021). Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles. J Control Release 333:258–68.
  • Golmohammadzadeh S, Mokhtari M, Jaafari MR. (2012). Preparation, characterization and evaluation of moisturizing and UV protecting effects of topical solid lipid nanoparticles. Braz J Pharm Sci 48:683–90.
  • Gujrati M, Malamas A, Shin T, et al. (2014). Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 11:2734–44.
  • Gumireddy A, Christman R, Kumari D, et al. (2019). Preparation, characterization, and in vitro evaluation of curcumin-and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech 20:1–14.
  • Hannon GJ, Rossi JJ. (2004). Unlocking the potential of the human genome with RNA interference. Nature 431:371–8.
  • Jones KL, Drane D, Gowans EJ. (2007). Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 43:675–81.
  • Karnik R, Gu F, Basto P, et al. (2008). Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–12.
  • Kim B, Park JH, Sailor MJ. (2019). Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Adv Mater 31:1903637.
  • Kulkarni JA, Darjuan MM, Mercer JE, Chen S, et al. (2018). On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12:4787–95.
  • Kumar R, Singh A, Garg N, Siril PF. (2018). Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrason Sonochem 40:686–96.
  • Kundu AK, Chandra PK, Hazari S, et al. (2012). Development and optimization of nanosomal formulations for siRNA delivery to the liver. Eur J Pharm Biopharm 80:257–67.
  • Kwon HJ, Kim S, Kim S, et al. (2017). Controlled production of monodisperse polycaprolactone microspheres using flow-focusing microfluidic device. BioChip J 11:214–8.
  • Lu X, Fang C, Sheng X, et al. (2019). One-step and solvent-free synthesis of polyethylene glycol-based polyurethane as solid–solid phase change materials for solar thermal energy storage. Ind Eng Chem Res 58:3024–32.
  • Maugeri M, Nawaz M, Papadimitriou A, et al. (2019). Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat Commun 10:1–15.
  • Moderna. (2020). Moderna announces longer shelf life for its COVID-19 vaccine candidate at refrigerated temperatures. Cambridge, MA: Moderna. Inc.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. (2018). mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17:261–79.
  • Petrilli R, Eloy JO, de Souza MC, et al. (2016). Lipid nanoparticles as non-viral vectors for siRNA delivery: concepts and applications. In: Nanobiomaterials in drug delivery. Norwich New York, USA: Elsevier, 75–109.
  • Roces CB, Lou G, Jain N, et al. (2020). Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics 12:1095.
  • Ryu S, Jin M, Lee H-K, et al. (2022). Effects of lipid nanoparticles on physicochemical properties, cellular uptake, and lymphatic uptake of 6-methoxflavone. J Pharm Investig 52:233–41.
  • Salminen H, Ankenbrand J, Zeeb B, et al. (2019). Influence of spray drying on the stability of food-grade solid lipid nanoparticles. Food Res Int 119:741–50.
  • Samaridou E, Heyes J, Lutwyche P. (2020). Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev 154-155:37–63.
  • Sato K. (2018). Crystallization of lipids: fundamentals and applications in food, cosmetics, and pharmaceuticals. Hoboken, NJ: John Wiley & Sons.
  • Schoenmaker L, Witzigmann D, Kulkarni JA, et al. (2021). mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm 601:120586.
  • Shepherd SJ, Issadore D, Mitchell MJ. (2021). Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 274:120826.
  • Sriwongsitanont S, Ueno M. (2010). Effect of freeze-thawing process on the size and lamellarity of peg-lipid liposomes. Open Colloid Sci J 4(1):1–6.
  • Suzuki Y, Hyodo K, Tanaka Y, Ishihara H. (2015). siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo. J Control Release 220:44–50.
  • Tang M, Hu S, Hattori Y. (2020). Effect of pre‑freezing and saccharide types in freeze‑drying of siRNA lipoplexes on gene‑silencing effects in the cells by reverse transfection. Mol Med Rep 22:3233–44.
  • Tcholakova S, Valkova Z, Cholakova D, et al. (2017). Efficient self-emulsification via cooling-heating cycles. Nat Commun 8:15012.
  • Titze-de-Almeida SS, Brandão PRdP, Faber I, Titze-de-Almeida R. (2020). Leading RNA interference therapeutics part 1: silencing hereditary transthyretin amyloidosis, with a focus on patisiran. Mol Diagn Ther 24:49–59.
  • Trenkenschuh E, Friess W. (2021). Freeze-drying of nanoparticles: how to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm 165:345–60.
  • Tsao C-W. (2016). Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 7:225.
  • Valkova Z, Cholakova D, Tcholakova S, et al. (2017). Mechanisms and control of self-emulsification upon freezing and melting of dispersed alkane drops. Langmuir 33:12155–70.
  • Vandamme TF, Anton N. (2010). Low-energy nanoemulsification to design veterinary controlled drug delivery devices. Int J Nanomedicine 5:867–73.
  • Villar-Alvarez E, Leal BH, Martinez-Gonzalez R, et al. (2019). SiRNA silencing by chemically modified biopolymeric nanovectors. ACS Omega 4:3904–21.
  • Westesen K, Siekmann B. (1997). Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int J Pharm 151:35–45.
  • Wittrup A, Ai A, Liu X, et al. (2015). Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol 33:870–6.
  • Zhang N-N, Li X-F, Deng Y-Q, et al. (2020). A thermostable mRNA vaccine against COVID-19. Cell 182:1271–83. e16.
  • Zhao P, Hou X, Yan J, et al. (2020). Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater 5:358–63.