3,047
Views
10
CrossRef citations to date
0
Altmetric
Review

Strategic developments in the drug delivery of natural product dihydromyricetin: applications, prospects, and challenges

, , , , & ORCID Icon
Pages 3052-3070 | Received 20 Jul 2022, Accepted 12 Sep 2022, Published online: 22 Sep 2022

References

  • Almasi H, Jahanbakhsh Oskouie M, Saleh A. (2021). A review on techniques utilized for design of controlled release food active packaging. Crit Rev Food Sci Nutr 61:2601–21. https://doi.org/10.1080/10408398.2020.1783199.
  • Aziz A, Sefidbakht Y, Rezaei S, et al. (2022). Doxorubicin-loaded, pH-sensitive albumin nanoparticles for lung cancer cell targeting. J Pharm Sci 111:1187–96. https://doi.org/10.1016/j.xphs.2021.12.006.
  • Bhanushali JS, Dhiman S, Nandi U, Bharate SS. (2022). Molecular interactions of niclosamide with hydroxyethyl cellulose in binary and ternary amorphous solid dispersions for synergistic enhancement of water solubility and oral pharmacokinetics in rats. Int J Pharm 626:122144. https://doi.org/10.1016/j.ijpharm.2022.122144.
  • Biswas S, Mukherjee PK, Harwansh RK, et al. (2019). Enhanced bioavailability and hepatoprotectivity of optimized ursolic acid-phospholipid complex. Drug Dev Ind Pharm 45:946–58. https://doi.org/10.1080/03639045.2019.1583755.
  • Bombardelli E. (1991). Phytosome: new cosmetic delivery system. Boll Chim Farm 130:431–8. https://www.ncbi.nlm.nih.gov/pubmed/1809296.
  • Cai S, Zhang P, Zhou L, et al. (2016). Determination and correlation of the solubility of myricetin in ethanol and water mixtures from 288.15 to 323.15K. Phys Chem Liq 55:1–11. https://doi.org/10.1080/00319104.2016.1163560.
  • Chaurasiya A, Gorajiya A, Panchal K, et al. (2022). A review on multivesicular liposomes for pharmaceutical applications: preparation, characterization, and translational challenges. Drug Deliv Transl Res 12:1569–87. https://doi.org/10.1007/s13346-021-01060-y.
  • ChavesJrJV, Dos Santos JAB, Lins TB, et al. (2020). A new ferulic acid-nicotinamide cocrystal with improved solubility and dissolution performance. J Pharm Sci 109:1330–7. https://doi.org/10.1016/j.xphs.2019.12.002.
  • Chen J, Wang X, Xia T, et al. (2021). Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother 142:111927. https://doi.org/10.1016/j.biopha.2021.111927.
  • Chen L, Shi M, Lv C, et al. (2021). Dihydromyricetin acts as a potential redox balance mediator in cancer chemoprevention. Mediators Inflamm 2021:6692579. https://doi.org/10.1155/2021/6692579.
  • Chen Y, Luo HQ, Sun LL, et al. (2018). Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement. IJMS 19:2592. https://doi.org/10.3390/ijms19092592.
  • Cheng X, Yan H, Pang S, et al. (2022). Liposomes as multifunctional nano-carriers for medicinal natural products. Front Chem 10:963004. https://doi.org/10.3389/fchem.2022.963004.
  • Cid AG, Simonazzi A, Palma SD, Bermúdez JM. (2019). Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs. Ther Deliv 10:363–82. https://doi.org/10.4155/tde-2019-0007.
  • Cid-Samamed A, Rakmai J, Mejuto JC, et al. (2022). Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications. Food Chem 384:132467. https://doi.org/10.1016/j.foodchem.2022.132467.
  • Dalcin AJF, Roggia I, Felin S, et al. (2021). UVB photoprotective capacity of hydrogels containing dihydromyricetin nanocapsules to UV-induced DNA damage. Colloids Surf B Biointerfaces 197:111431. https://doi.org/10.1016/j.colsurfb.2020.111431.
  • Dalcin AJF, Santos CG, Gundel SS, et al. (2017). Anti biofilm effect of dihydromyricetin-loaded nanocapsules on urinary catheter infected by Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 156:282–91. https://doi.org/10.1016/j.colsurfb.2017.05.029.
  • Dalcin AJF, Vizzotto BS, Bochi GV, et al. (2019). Nanoencapsulation of the flavonoid dihydromyricetin protects against the genotoxicity and cytotoxicity induced by cationic nanocapsules. Colloids Surf B Biointerfaces 173:798–805. https://doi.org/10.1016/j.colsurfb.2018.10.066.
  • Dams ET, Laverman P, Oyen WJ, et al. (2000). Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–9.
  • Das S, Majumder T, Sarkar A, et al. (2020). Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation. Int J Biol Macromol 165:1323–30. https://doi.org/10.1016/j.ijbiomac.2020.09.232.
  • Deng S, Gigliobianco MR, Censi R, Di Martino P. (2020). Polymeric banocapsules as banotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials 10:847. https://doi.org/10.3390/nano10050847.
  • Egito EST, Amaral-Machado L, Alencar EN, Oliveira AG. (2021). Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery. Drug Deliv Transl Res 11:2108–33. https://doi.org/10.1007/s13346-020-00872-8.
  • El Sayed MM, Takata H, Shimizu T, et al. (2020). Hepatosplenic phagocytic cells indirectly contribute to anti-PEG IgM production in the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes: appearance of an unexplained mechanism in the ABC phenomenon. J Control Release 323:102–9. https://doi.org/10.1016/j.jconrel.2020.04.011.
  • Fan KJ, Yang B, Liu Y, et al. (2017). Inhibition of human lung cancer proliferation through targeting stromal fibroblasts by dihydromyricetin. Mol Med Rep 16:9758–62. https://doi.org/10.3892/mmr.2017.7802.
  • Fan L, Tong Q, Dong W, et al. (2017). Tissue distribution, excretion, and metabolic profile of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) after oral administration in rats. J Agric Food Chem 65:4597–604. https://doi.org/10.1021/acs.jafc.7b01155.
  • Fan M, Zhang G, Pan J, Gong D. (2017). An inhibition mechanism of dihydromyricetin on tyrosinase and the joint effects of vitamins B6, D3 or E. Food Funct 8:2601–10. https://doi.org/10.1039/c7fo00236j.
  • Ferte J, Kuhnel JM, Chapuis G, et al. (1999). Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. J Med Chem 42:478–89. https://doi.org/10.1021/jm981064b.
  • Frank LA, Contri RV, Beck RC, et al. (2015). Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:623–39. https://doi.org/10.1002/wnan.1334.
  • Franze S, Selmin F, Samaritani E, et al. (2018). Lyophilization of liposomal formulations: still necessary, still challenging. Pharmaceutics 10:139. https://doi.org/10.3390/pharmaceutics10030139.
  • Gao J, Shi N, Guo H, et al. (2021). UPLC-Q-TOF/MS-based metabolomics approach to reveal the hepatotoxicity of emodin and detoxification of dihydromyricetin. ACS Omega 6:5348–58. https://doi.org/10.1021/acsomega.0c05488.
  • Garavand F, Jalai-Jivan M, Assadpour E, Jafari SM. (2021). Encapsulation of phenolic compounds within nano/microemulsion systems: a review. Food Chem 364:130376. https://doi.org/10.1016/j.foodchem.2021.130376.
  • Geng S, Jiang Z, Ma H, et al. (2021). Fabrication and characterization of novel edible Pickering emulsion gels stabilized by dihydromyricetin. Food Chem 343:128486. https://doi.org/10.1016/j.foodchem.2020.128486.
  • Geng S, Li Y, Lv J, et al. (2022). Fabrication of food-grade Pickering high internal phase emulsions (HIPEs) stabilized by a dihydromyricetin and lysozyme mixture. Food Chem 373:131576. https://doi.org/10.1016/j.foodchem.2021.131576.
  • Geng S, Liu X, Ma H, et al. (2021). Multi-scale stabilization mechanism of Pickering emulsion gels based on dihydromyricetin/high-amylose corn starch composite particles. Food Chem 355:129660. https://doi.org/10.1016/j.foodchem.2021.129660.
  • Gulcin I. (2020). Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94:651–715. https://doi.org/10.1007/s00204-020-02689-3.
  • Guo RX, Fu X, Chen J, et al. (2016). Preparation and characterization of microemulsions of myricetin for improving its antiproliferative and antioxidative activities and Oral bioavailability. J Agric Food Chem 64:6286–94. https://doi.org/10.1021/acs.jafc.6b02184.
  • Han H, Dong Y, Ma X. (2020). Dihydromyricetin protects against gentamicin-induced ototoxicity via PGC-1alpha/SIRT3 signaling in vitro. Front Cell Dev Biol 8:702. https://doi.org/10.3389/fcell.2020.00702.
  • He MH, Zhang Q, Shu G, et al. (2018). Dihydromyricetin sensitizes human acute myeloid leukemia cells to retinoic acid-induced myeloid differentiation by activating STAT1. Biochem Biophys Res Commun 495:1702–7. https://doi.org/10.1016/j.bbrc.2017.12.030.
  • Hu Q, Zhang T, Yi L, et al. (2018). Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells. Biofactors 44:123–36. https://doi.org/10.1002/biof.1395.
  • Huang Y, Wang T, Yang J, et al. (2022). Current strategies for the treatment of hepatocellular carcinoma by modulating the tumor microenvironment via nano-delivery systems: a review. Int J Nanomed 17:2335–52. https://doi.org/10.2147/IJN.S363456.
  • Ibaraki H, Takeda A, Arima N, et al. (2021). In vivo fluorescence imaging of passive inflammation site accumulation of liposomes via intravenous administration focused on their surface charge and PEG modification. Pharmaceutics 13:104. https://doi.org/10.3390/pharmaceutics13010104.
  • Iglesias N, Galbis E, Romero-Azogil L, et al. (2020). In-depth study into polymeric materials in low-density gastroretentive formulations. Pharmaceutics 12:636. https://doi.org/10.3390/pharmaceutics12070636.
  • Isgut M, Rao M, Yang C, et al. (2018). Application of combination high-throughput phenotypic screening and target identification methods for the discovery of natural product-based combination drugs. Med Res Rev 38:504–24. https://doi.org/10.1002/med.21444.
  • Jiang L, Zhang Q, Ren H, et al. (2015). Dihydromyricetin enhances the chemo-sensitivity of nedaplatin via regulation of the p53/Bcl-2 pathway in hepatocellular carcinoma cells. PLoS One 10:e0124994. https://doi.org/10.1371/journal.pone.0124994.
  • Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. (2019). Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today 24:796–804. https://doi.org/10.1016/j.drudis.2018.11.023.
  • Kianfar E. (2021). Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnol 19:159. https://doi.org/10.1186/s12951-021-00896-3.
  • Kim DW, Kwon MS, Yousaf AM, et al. (2014). Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate. Carbohydr Polym 114:365–74. https://doi.org/10.1016/j.carbpol.2014.08.034.
  • Kou X, Liu X, Chen X, et al. (2016). Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway. Oncotarget 7:74484–95. https://doi.org/10.18632/oncotarget.[PMC][27780933]
  • Kuche K, Bhargavi N, Dora CP, Jain S. (2019). Drug-phospholipid complex-a go through strategy for enhanced oral bioavailability. AAPS PharmSciTech 20:43. https://doi.org/10.1208/s12249-018-1252-4.
  • Kunde SS, Wairkar S. (2022). Targeted delivery of albumin nanoparticles for breast cancer: a review. Colloids Surf B Biointerfaces 213:112422. https://doi.org/10.1016/j.colsurfb.2022.112422.
  • Landis HE, Getachew B, Tizabi Y. (2022). Therapeutic potential of flavonoids and Zinc in COVID-19. Medpress Nutr Food Sci 1:202111001.
  • Li P, Ramaiah T, Zhang M, et al. (2020). Two cocrystals of berberine chloride with myricetin and dihydromyricetin: crystal structures, characterization, and antitumor activities. Cryst Growth Des 20:157–66. https://doi.org/10.1021/acs.cgd.9b00939.
  • Li S, Zhang B, Li C, et al. (2020). Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: role of the gel network. Food Chem 305:125476. https://doi.org/10.1016/j.foodchem.2019.125476.
  • Li X, Wang X, Wang B, et al. (2022). Dihydromyricetin protects against Doxorubicin-induced cardiotoxicity through activation of AMPK/mTOR pathway. Phytomedicine 99:154027. https://doi.org/10.1016/j.phymed.2022.154027.
  • Li XM, Li X, Wu Z, et al. (2020). Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of beta-carotene: protection effect and in vitro digestion study. Food Chem 315:126288. https://doi.org/10.1016/j.foodchem.2020.126288.
  • Li Y, Zhang R, Li X, et al. (2020). The preparation of dexamethasone sodium phosphate multivesicular liposomes thermosensative hydrogel and its impact on noise-induced hearing loss in the Guinea pigs. Exp Cell Res 387:111755. https://doi.org/10.1016/j.yexcr.2019.111755.
  • Li Y, Zhou Y, Wang M, et al. (2021). Ampelopsin inhibits breast cancer cell growth through mitochondrial apoptosis pathway. Biol Pharm Bull 44:1738–45. https://doi.org/10.1248/bpb.b21-00470.
  • Liang H, He K, Li T, et al. (2020). Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci Rep 10:21416. https://doi.org/10.1038/s41598-020-78379-y.
  • Lim SI, Lukianov CI, Champion JA. (2017). Self-assembled protein nanocarrier for intracellular delivery of antibody. J Control Release 249:1–10. https://doi.org/10.1016/j.jconrel.2017.01.007.
  • Lima AL, Gratieri T, Cunha-Filho M, Gelfuso GM. (2022). Polymeric nanocapsules: a review on design and production methods for pharmaceutical purpose. Methods 199:54–66. https://doi.org/10.1016/j.ymeth.2021.07.009.
  • Liu B, Ma Y, Yuan C, et al. (2012). Characterization, stability and antioxidant activity of the inclusion complex of dihydromyricetin with hydroxypropyl-β-cyclodextrin. J Food Biochem 36:634–41. https://doi.org/10.1111/j.1745-4514.2011.00577.x.
  • Liu C, Ma X, Zhuang J, et al. (2020). Cardiotoxicity of doxorubicin-based cancer treatment: what is the protective cognition that phytochemicals provide us? Pharmacol Res 160:105062. https://doi.org/10.1016/j.phrs.2020.105062.
  • Liu D, Mao YQ, Ding LJ, Zeng XA. (2019). Dihydromyricetin: a review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol 91:586–97. https://doi.org/10.1016/j.tifs.2019.07.038.
  • Liu H, Gan C, Shi H, et al. (2021). Gastric floating pill enhances the bioavailability and drug efficacy of dihydromyricetin in vivo. J Drug Delivery Sci Technol 61:102279. https://doi.org/10.1016/j.jddst.2020.102279.
  • Liu H, Wang D, Ren Y, et al. (2022). Multispectroscopic and synergistic antioxidant study on the combined binding of caffeic acid and (−)-epicatechin gallate to lysozyme, Spectrochim. Spectrochim Acta A Mol Biomol Spectrosc 272:120986. https://doi.org/10.1016/j.saa.2022.120986.
  • Liu H, Wang S, Shi H, et al. (2021). Gastric floating tablet improves the bioavailability and reduces the hypokalemia effect of gossypol in vivo. Saudi Pharm J 29:305–14. https://doi.org/10.1016/j.jsps.2021.03.001.
  • Liu H, Zhang R, Zhang D, et al. (2022). Cyclic RGD-decorated liposomal gossypol AT-101 targeting for enhanced antitumor effect. Int J Nanomed 17:227–44. https://doi.org/10.2147/IJN.S341824.
  • Liu H, Zhang YH, Hu MH, et al. (2020). Film-injection as a dosage form for etomidate: enhancing the stability of nanomedicines using solid intermediate products. J Drug Delivery Sci Technol 56:101541. https://doi.org/10.1016/j.jddst.2020.101541.
  • Liu H, Zhao W, Hu Q, et al. (2019). Gastric floating sustained-release tablet for dihydromyricetin: development, characterization, and pharmacokinetics study. Saudi Pharm J 27:1000–8. https://doi.org/10.1016/j.jsps.2019.08.002.
  • Liu J, Wang X, Yong H, et al. (2018). Recent advances in flavonoid-grafted polysaccharides: synthesis, structural characterization, bioactivities and potential applications. Int J Biol Macromol 116:1011–25. https://doi.org/10.1016/j.ijbiomac.2018.05.149.
  • Liu J, Yong H, Liu Y, Bai R. (2020). Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. Int J Biol Macromol 156:1539–55. https://doi.org/10.1016/10.1016/j.ijbiomac.2019.11.202.
  • Liu K, Chen YY, Zha XQ, et al. (2021). Research progress on polysaccharide/protein hydrogels: preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res Int 147:110542. https://doi.org/10.1016/j.foodres.2021.110542.
  • Liu L, Li Y, Zhang M, et al. (2022). A drug-drug cocrystal of dihydromyricetin and pentoxifylline. J Pharm Sci 111:82–7. https://doi.org/10.1016/j.xphs.2021.06.021.
  • Liu S, Ai Q, Feng K, et al. (2016). The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1alpha signaling pathways. Apoptosis 21:1366–85. https://doi.org/10.1007/s10495-016-1306-6.
  • Lu B, Ma Q, Zhang J, et al. (2021). Preparation and characterization of bupivacaine multivesicular liposome: a QbD study about the effects of formulation and process on critical quality attributes. Int J Pharm 598:120335. https://doi.org/10.1016/j.ijpharm.2021.120335.
  • Luo F, Zeng D, Chen R, et al. (2021). PEGylated dihydromyricetin-loaded nanoliposomes coated with tea saponin inhibit bacterial oxidative respiration and energy metabolism. Food Funct 12:9007–17. https://doi.org/10.1039/d1fo01943k.
  • Luo F, Zeng DD, Yang YT, et al. (2021). Preparation, characterization and antibacterial properties of multivesicular dihydromyricetin-coated liposomes. CIESC J 72:2223–32. (In Chinese). https://doi.org/10.11949/0438-1157.20201159.
  • Lv P, Wang D, Dai L, et al. (2020). Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: characterization and encapsulation of curcumin. Food Res Int 132:109032. https://doi.org/10.1016/j.foodres.2020.109032.
  • Lv S, Kim H, Song Z, et al. (2020). Unimolecular polypeptide micelles via ultrafast polymerization of N-carboxyanhydrides. J Am Chem Soc 142:8570–4. https://doi.org/10.1021/jacs.0c01173.
  • Ma JQ, Sun YZ, Ming QL, et al. (2019). Ampelopsin attenuates carbon tetrachloride-induced mouse liver fibrosis and hepatic stellate cell activation associated with the SIRT1/TGF-beta1/Smad3 and autophagy pathway. Int Immunopharmacol 77:105984. https://doi.org/10.1016/j.intimp.2019.105984.
  • Ma X, Bai S, Zhang X, et al. (2019). Enhanced tumor penetration and chemotherapy efficiency by covalent self-assembled nanomicelle responsive to tumor microenvironment. Biomacromolecules 20:2637–48. https://doi.org/10.1021/acs.biomac.9b00424.
  • Ma Y, Zeng M, Sun R, Hu M. (2014). Disposition of flavonoids impacts their efficacy and safety. Curr Drug Metab 15:841–64. https://doi.org/10.2174/1389200216666150206123719.
  • Manzoor A, Dar AH, Pandey VK, et al. (2022). Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review. Int J Biol Macromol 213:987–1006. https://doi.org/10.1016/j.ijbiomac.2022.06.044.
  • Martínez-Coria H, Mendoza-Rojas MX, Arrieta-Cruz I, López-Valdés HE. (2019). Preclinical research of dihydromyricetin for brain aging and neurodegenerative diseases. Front Pharmacol 10:1334. https://doi.org/10.3389/fphar.2019.01334.
  • Moon NR, Kang S, Park S. (2018). Consumption of ellagic acid and dihydromyricetin synergistically protects against UV-B induced photoaging, possibly by activating both TGF-beta1 and wnt signaling pathways. J Photochem Photobiol B 178:92–100. https://doi.org/10.1016/j.jphotobiol.2017.11.004.
  • Morales P, Maieves HA, Dias MI, et al. (2017). Hovenia dulcis Thunb. pseudofruits as functional foods: phytochemicals and bioactive properties in different maturity stages. J Funct Foods 29:37–45. https://doi.org/10.1016/j.jff.2016.12.003.
  • Mu K, Jiang K, Wang Y, et al. (2022). The biological fate of pharmaceutical excipient beta-cyclodextrin: pharmacokinetics, tissue distribution, excretion, and metabolism of beta-cyclodextrin in rats. Molecules 27:1138. https://doi.org/10.3390/molecules27031138.
  • Mwangi WW, Lim HP, Low LE, et al. (2020). Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends Food Sci Technol 100:320–32. https://doi.org/10.1016/j.tifs.2020.04.020.
  • Nair AR, Lakshman YD, Anand VSK, et al. (2020). Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech 21:309. https://doi.org/10.1208/s12249-020-01849-z.
  • Narayanaswamy R, Torchilin VP. (2019). Hydrogels and their applications in targeted drug delivery. Molecules 24:603. https://doi.org/10.3390/molecules24030603.
  • Nikezic AVV, Bondzic AM, Vasic VM. (2020). Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 151:105412. https://doi.org/10.1016/j.ejps.2020.105412.
  • Park GB, Jeong JY, Kim D. (2017). Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling. Oncol Lett 14:7947–56. https://doi.org/10.3892/ol.2017.7255.[PMC][29250183]
  • Rajora A, Nagpal K. (2022). A critical review on floating tablets as a tool for achieving better gastric retention. Crit Rev Ther Drug Carrier Syst 39:65–103. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021038568.
  • Ruan LP, Yu BY, Fu GM, Zhu DN. (2005). Improving the solubility of ampelopsin by solid dispersions and inclusion complexes. J Pharm Biomed Anal 38:457–64. https://doi.org/10.1016/j.jpba.2005.01.030.
  • Salawi A. (2022). Self-emulsifying drug delivery systems: a novel approach to deliver drugs. Drug Deliv 29:1811–23. https://doi.org/10.1080/10717544.2022.2083724.
  • Samsonowicz M, Regulska E. (2017). Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes. Spectrochim Acta A Mol Biomol Spectrosc 173:757–71. https://doi.org/10.1016/j.saa.2016.10.031.
  • Santana R, Zuluaga R, Ganan P, et al. (2020). PTML model for selection of nanoparticles, anticancer drugs, and vitamins in the design of drug-vitamin nanoparticle release systems for cancer cotherapy. Mol Pharm 17:2612–27. https://doi.org/10.1021/acs.molpharmaceut.0c00308.
  • Shen C, Chen R, Qian Z, et al. (2015). Intestinal absorption mechanisms of MTBH, a novel hesperetin derivative, in Caco-2 cells, and potential involvement of monocarboxylate transporter 1 and multidrug resistance protein 2. Eur J Pharm Sci 78:214–24. https://doi.org/10.1016/j.ejps.2015.07.022.
  • Shen J, Li J, Yu P, Du G. (2022). Research status and hotspots of anticancer natural products based on the patent literature and scientific articles. Front Pharmacol 13:903239. https://doi.org/10.3389/fphar.2022.903239.
  • Shen P, Tang Q, Chen X, Li Z. (2022). Nanocrystalline cellulose extracted from bast fibers: preparation, characterization, and application. Carbohydr Polym 290:119462. https://doi.org/10.1016/j.carbpol.2022.119462.
  • Shi C, Wang J, Zhang R, et al. (2022). Dihydromyricetin alleviates Escherichia coli lipopolysaccharide-induced hepatic injury in chickens by inhibiting the NLRP3 inflammasome. Vet Res 53:6. https://doi.org/10.1186/s13567-022-01024-1.
  • Shinozaki T, Ono M, Higashi K, Moribe K. (2019). A novel drug-drug cocrystal of levofloxacin and metacetamol: reduced hygroscopicity and improved photostability of levofloxacin. J Pharm Sci 108:2383–90. https://doi.org/10.1016/j.xphs.2019.02.014.
  • Silva J, Carry E, Xue C, et al. (2021). A novel dual drug approach that combines ivermectin and dihydromyricetin (DHM) to reduce alcohol drinking and preference in mice. Molecules 26:1791. https://doi.org/10.3390/molecules26061791.
  • Solanki SS, Sarkar B, Dhanwani RK. (2012). Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN Pharm 2012:108164. https://doi.org/10.5402/2012/108164.
  • Stankovic JSK, Selakovic D, Mihailovic V, Rosic G. (2020). Antioxidant supplementation in the treatment of neurotoxicity induced by platinum-based chemotherapeutics: a review. IJMS 21:7753. https://doi.org/10.3390/ijms21207753.
  • Stecanella LA, Bitencourt APR, Vaz GR, et al. (2021). Glycyrrhizic acid and its hydrolyzed metabolite 18 beta-glycyrrhetinic acid as specific ligands for targeting nanosystems in the treatment of liver cancer. Pharmaceutics 13:1792. https://doi.org/10.3390/pharmaceutics13111792.
  • Sun C, Gui Y, Hu R, et al. (2018). Preparation and pharmacokinetics evaluation of solid self-microemulsifying drug delivery system (S-SMEDDS) of osthole. AAPS PharmSciTech 19:2301–10. https://doi.org/10.1208/s12249-018-1067-3.
  • Sun CC, Li Y, Yin ZP, Zhang QF. (2021). Physicochemical properties of dihydromyricetin and the effects of ascorbic acid on its stability and bioavailability. J Sci Food Agric 101:3862–9. https://doi.org/10.1002/jsfa.11022.
  • Sun CC, Su H, Zheng GD, et al. (2020). Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat. Food Chem 330:127245. https://doi.org/10.1016/j.foodchem.2020.127245.
  • Sun Y, Li Y, Shen Y, et al. (2019). Enhanced oral delivery and anti-gastroesophageal reflux activity of curcumin by binary mixed micelles. Drug Dev Ind Pharm 45:1444–50. https://doi.org/10.1080/03639045.2019.1628041.
  • Sun Y, Liu S, Yang S, et al. (2021). Mechanism of dihydromyricetin on inflammatory diseases. Front Pharmacol 12:794563. https://doi.org/10.3389/fphar.2021.794563.
  • Sun Y, Liu W, Wang C, et al. (2019). Combination of dihydromyricetin and ondansetron strengthens antiproliferative efficiency of adriamycin in K562/ADR through downregulation of SORCIN: a new strategy of inhibiting P-glycoprotein. J Cell Physiol 234:3685–96. https://doi.org/10.1002/jcp.27141
  • Sun Y, Wang C, Meng Q, et al. (2018). Targeting P-glycoprotein and SORCIN: dihydromyricetin strengthens anti-proliferative efficiency of adriamycin via MAPK/ERK and Ca2+-mediated apoptosis pathways in MCF-7/ADR and K562/ADR. J Cell Physiol 233:3066–79. https://doi.org/10.1002/jcp.26087.
  • Sun Z, Lu W, Lin N, et al. (2020). Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol 175:113888. https://doi.org/10.1016/j.bcp.2020.113888.
  • Tian Y, Sang H, Liu M, et al. (2020). Dihydromyricetin is a new inhibitor of influenza polymerase PB2 subunit and influenza-induced inflammation. Microbes Infect 22:254–62. https://doi.org/10.1016/j.micinf.2020.05.021.
  • Tong H, Zhang X, Tan L, et al. (2020). Multitarget and promising role of dihydromyricetin in the treatment of metabolic diseases. Eur J Pharmacol 870:172888. https://doi.org/10.1016/j.ejphar.2019.172888.
  • Tong Q, Hou X, Fang J, et al. (2015). Determination of dihydromyricetin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal 114:455–61. https://doi.org/10.1016/j.jpba.2015.06.030.
  • Tran P, Park JS. (2021). Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int J Pharm 610:121247. https://doi.org/10.1016/j.ijpharm.2021.121247.
  • Wang C, Tong Q, Hou X, et al. (2016). Enhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitor. Cryst Growth Des 16:5030–9. https://doi.org/10.1021/acs.cgd.6b00591
  • Wang C, Xiong W, Reddy Perumalla S, et al. (2016). Solid-state characterization of optically pure (+)Dihydromyricetin extracted from Ampelopsis grossedentata leaves. Int J Pharm 511:245–52. https://doi.org/10.1016/j.ijpharm.2016.07.018.
  • Wang D, Ma Y, Wang Q, et al. (2019). Solid self-emulsifying delivery system (S-SEDS) of dihydromyricetin: a new way for preparing functional food. J Food Sci 84:936–45. https://doi.org/10.1111/1750-3841.14508.
  • Wang S, Ge F, Cai T, et al. (2021). Dihydromyricetin inhibits proliferation and migration of gastric cancer cells through regulating Akt/STAT3 signaling pathways and HMGB1 expression. Nan Fang Yi Ke Da Xue Xue Bao 41:87–92. (In Chinese). https://doi.org/10.12122/j.issn.1673-4254.2021.01.12.
  • Wang Y, Wang J, Xiang H, et al. (2022). Recent update on application of dihydromyricetin in metabolic related diseases. Biomed Pharmacother 148:112771. https://doi.org/10.1016/j.biopha.2022.112771.
  • Wang Z, Sun X, Feng Y, et al. (2017). Dihydromyricetin reverses MRP2-mediated MDR and enhances anticancer activity induced by oxaliplatin in colorectal cancer cells. Anticancer Drugs 28:281–8. https://doi.org/10.1097/CAD.0000000000000459.
  • Wei C, Chen X, Chen D, et al. (2022). Dihydromyricetin enhances intestinal antioxidant capacity of growing-finishing pigs by activating ERK/Nrf2/HO-1 signaling pathway. Antioxidants 11:704. https://doi.org/10.3390/antiox11040704.
  • Wei Z, Chen Y, Wijaya W, et al. (2020). Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles. Food Funct 11:1478–88. https://doi.org/10.1039/c9fo02564b.
  • Wu F, Li Y, Song H, et al. (2016). Preventive effect of dihydromyricetin against cisplatin-induced nephrotoxicity in vitro and in vivo. Evid Based Complement Alternat Med 2016:7937385. https://doi.org/10.1155/2016/7937385.
  • Wu J, Xiao Z, Li H, et al. (2022). Present status, challenges, and prospects of dihydromyricetin in the battle against cancer. Cancers (Basel) 14:3487. https://doi.org/10.3390/cancers14143487.
  • Wu JZ, Ardah M, Haikal C, et al. (2019). Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Transl Neurodegener 8:18. https://doi.org/10.1186/s40035-019-0159-7.
  • Wu M, Jiang M, Dong T, et al. (2020). Reversal effect of dihydromyricetin on multiple drug resistance in SGC7901/5-FU cells. Asian Pac J Cancer Prev 21:1269–74. https://doi.org/10.31557/APJCP.2020.21.5.1269.
  • Wu YP, Xiao Y, Yue YX, et al. (2020). A deep insight into mechanism for inclusion of 2R,3R-dihydromyricetin with cyclodextrins and the effect of complexation on antioxidant and lipid-lowering activities. Food Hydrocolloids 103:105718. https://doi.org/10.1016/j.foodhyd.2020.105718.
  • Xiao T, Wei Y, Cui M, et al. (2021). Effect of dihydromyricetin on SARS-CoV-2 viral replication and pulmonary inflammation and fibrosis. Phytomedicine 91:153704. https://doi.org/10.1016/j.phymed.2021.153704.
  • Xie J, Fan Z, Li Y, et al. (2018). Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy. Int J Nanomed 13:1381–98. https://doi.org/10.2147/IJN.S152312.
  • Xie J, Liu J, Chen TM, et al. (2015). Dihydromyricetin alleviates carbon tetrachloride-induced acute liver injury via JNK-dependent mechanism in mice. WJG 21:5473–81. https://doi.org/10.3748/wjg.v21.i18.5473.
  • Xie W, Du Y, Yuan S, Pang J. (2021). Dihydromyricetin incorporated active films based on konjac glucomannan and gellan gum. Int J Biol Macromol 180:385–91. https://doi.org/10.1016/j.ijbiomac.2021.02.185.
  • Xie Y, Mai CT, Zheng DC, et al. (2021). Wutou decoction ameliorates experimental rheumatoid arthritis via regulating NF-kB and Nrf2: integrating efficacy-oriented compatibility of traditional Chinese medicine. Phytomedicine 85:153522. https://doi.org/10.1016/j.phymed.2021.153522.
  • Xiong Y, Zhu GH, Zhang YN, et al. (2021). Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: inhibition potentials, covalent binding sites and inhibitory mechanisms. Int J Biol Macromol 187:976–87. https://doi.org/10.1016/j.ijbiomac.2021.07.167.
  • Xu Y, Wang S, Chan HF, et al. (2017). Dihydromyricetin induces apoptosis and reverses drug resistance in ovarian cancer cells by p53-mediated downregulation of survivin. Sci Rep 7:46060. https://doi.org/10.1038/srep46060.
  • Yan Y, Wang K, Tang X, et al. (2019). Phytochemicals protect L02 cells against hepatotoxicity induced by emodin via the Nrf2 signaling pathway. Toxicol Res (Camb) 8:1028–34. https://doi.org/10.1039/c9tx00220k.
  • Yang J, Liu B, Liu F, Zhang Y. (2011). Apoptosis induced by the inclusion complex of dihydromyricetin with hydroxypropyl-β-cyclodextrin in Human Hep G2 cells. J Med Plants Res 5:114–8. https://doi.org/10.5897/JMPR.9000249.
  • Ye J, Bao S, Zhao S, et al. (2021). Self-assembled micelles improve the oral bioavailability of dihydromyricetin and anti-acute alcoholism activity. AAPS PharmSciTech 22:111. https://doi.org/10.1208/s12249-021-01983-2.
  • Yuba E. (2020). Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B 8:1093–107. https://doi.org/10.1039/c9tb02470k.
  • Zeng X, Yang J, Hu O, et al. (2019). Dihydromyricetin ameliorates nonalcoholic fatty liver disease by improving mitochondrial respiratory capacity and redox homeostasis through modulation of SIRT3 signaling. Antioxid Redox Signal 30:163–83. https://doi.org/10.1089/ars.2017.7172.
  • Zhang C, Xu C, Gao X, Yao Q. (2022). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12:2115–32. https://doi.org/10.7150/thno.69424.
  • Zhang J, Chen Y, Luo H, et al. (2018). Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Front Pharmacol 9:1204. https://doi.org/10.3389/fphar.2018.01204.
  • Zhang Q, Liu J, Duan H, et al. (2021). Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 34:43–63. https://doi.org/10.1016/j.jare.2021.06.023.
  • Zhang WJ, Chen YZ, Tang LR, et al. (2018). Preparation of long-circulating dihydromyricetin liposomes and its pharmacokinetics in rats. Zhong Cao Yao 49:806–13. (In Chinese). https://doi.org/10.7501/j.issn.0253-2670.2018.04.009.
  • Zhang Y, Lu H, Wang B, et al. (2020). pH-responsive non-Pickering emulsion stabilized by dynamic covalent bond surfactants and nano-SiO2 particles. Langmuir 36:15230–9. https://doi.org/10.1021/acs.langmuir.0c02422.
  • Zhang Z, Zhang H, Chen S, et al. (2017). Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway. Nutr Res 38:27–33. https://doi.org/10.1016/j.nutres.2017.01.003.
  • Zhao X, Shi C, Zhou X, et al. (2019). Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: in vitro and in vivo evaluations. Eur J Pharm Sci 138:104994. https://doi.org/10.1016/j.ejps.2019.104994.
  • Zhao Z, Yin JQ, Wu MS, et al. (2014). Dihydromyricetin activates AMP-activated protein kinase and P38MAPK exerting antitumor potential in osteosarcoma. Cancer Prev Res (Phila) 7:927–38. https://doi.org/10.1158/1940-6207.CAPR-14-0067.
  • Zhou DZ, Sun HY, Yue JQ, et al. (2017). Dihydromyricetin induces apoptosis and cytoprotective autophagy through ROS-NF-kappaB signalling in human melanoma cells. Free Radic Res 51:517–28. https://doi.org/10.1080/10715762.2017.1328552.
  • Zhou Y, Liang X, Chang H, et al. (2014). Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress. Cancer Sci 105:1279–87. https://doi.org/10.1111/cas.12494.
  • Zhu H, Luo P, Fu Y, et al. (2015). Dihydromyricetin prevents cardiotoxicity and enhances anticancer activity induced by adriamycin. Oncotarget 6:3254–67. https://doi.org/10.18632/oncotarget.2410.
  • Zuo AR, Dong HH, Yu YY, et al. (2018). The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin Med 13:51. https://doi.org/10.1186/s13020-018-0206-9.