1,347
Views
7
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Increased brain uptake of pterostilbene loaded folate modified micellar delivery system

, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3071-3086 | Received 07 Jun 2022, Accepted 12 Sep 2022, Published online: 21 Sep 2022

References

  • Amarnath Satheesh M, Pari L. (2006). The antioxidant role of pterostilbene in streptozotocin-nicotinamide-induced type 2 diabetes mellitus in Wistar rats. J Pharm Pharmacol 58:1483–90.
  • Betzer O, Shilo M, Opochinsky R, et al. (2017). The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. Nanomedicine (Lond) 12:1533–46.
  • Bhakkiyalakshmi E, Shalini D, Sekar TV, et al. (2014). Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br J Pharmacol 171:1747–57.
  • Chang J, Rimando A, Pallas M, et al. (2012). Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33:2062–71.
  • Dong X. (2018). Current strategies for brain drug delivery. Theranostics 8:1481–93.
  • Dong Y, Feng SS. (2007). In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 28:4154–60.
  • Duan Y, Wang J, Yang X, et al. (2015). Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro. Drug Deliv 22:50–7.
  • Fernandez M, Javaid F, Chudasama V. (2018). Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci 9:790–810.
  • Ferrer P, Asensi M, Segarra R, et al. (2005). Association between pterostilbene and quercetin inhibits metastatic activity of B16 melanoma. Neoplasia 7:37–47.
  • Gao H. (2017). Perspectives on dual targeting delivery systems for brain tumors. J Neuroimmune Pharmacol 12:6–16.
  • Gothwal A, Khan I, Gupta U. (2016). Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res 33:18–39.
  • Gul M, Shah FA, Sahar NU, et al. (2022). Formulation optimization, in vitro and in vivo evaluation of agomelatine-loaded nanostructured lipid carriers for augmented antidepressant effects. Colloids Surf B Biointerfaces 216:112537.
  • Guo Y, Gao T, Fang F, et al. (2021). A novel polymer micelle as a targeted drug delivery system for 10-hydroxycamptothecin with high drug-loading properties and anti-tumor efficacy. Biophys Chem 279:106679.
  • Han L, Jiang C. (2021). Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 11:2306–25.
  • He X, Wang X, Yang L, et al. (2022). Intelligent lesion blood-brain barrier targeting nano-missiles for Alzheimer’s disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharm Sin B 12:1987–99.
  • Jain A, Jain SK. (2015). Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit Rev Ther Drug Carrier Syst 32:149–80.
  • Juyang Z, Wolf B. (2021). Impact of type of sugar beet pectin-sodium caseinate interaction on emulsion properties at pH 4.5 and pH 7. Foods 10:631.
  • Kalhapure RS, Suleman N, Mocktar C, et al. (2015). Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 104:872–905.
  • Katekar R, Thombre G, Riyazuddin M, et al. (2020). Pharmacokinetics and brain targeting of trans-resveratrol loaded mixed micelles in rats following intravenous administration. Pharm Dev Technol 25:300–7.
  • Khan A, Aqil M, Imam SS, et al. (2018). Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: characterization, nasal absorption, histopathology and cell line study. Int J Biol Macromol 116:1260–7.
  • Khan A, Imam SS, Aqil M, et al. (2016). Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: brain pharmacokinetic and scintigraphic analyses. Mol Pharm 13:3773–82.
  • Khan N, Shah FA, Rana I, et al. (2020). Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int J Pharm 577:119033.
  • Kheiri Manjili H, Ghasemi P, Malvandi H, et al. (2017a). Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. Eur J Pharm Biopharm 116:17–30.
  • Kheiri Manjili H, Sharafi A, Attari E, Danafar H. (2017b). Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL-PEG-PCL copolymeric-based micelles. Artif Cells Nanomed Biotechnol 45:1728–39.
  • Kucheryavykh YV, Davila J, Ortiz-Rivera J, et al. (2019). Targeted delivery of nanoparticulate cytochrome C into glioma cells through the proton-coupled folate transporter. Biomolecules 9:154.
  • Kuo YC, Chang YH, Rajesh R. (2019). Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)poly(epsiloncaprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. Mater Sci Eng C Mater Biol Appl 96:114–28.
  • Lei T, Yang Z, Xia X, et al. (2021). A nanocleaner specifically penetrates the bloodbrain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer’s disease. Acta Pharm Sin B 11:4032–44.
  • Lingineni K, Belekar V, Tangadpalliwar SR, Garg P. (2017). The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability. Mol Divers 21:355–65.
  • Liu J, Chen F, Tian W, et al. (2014). Optimization and characterization of curcumin loaded in octenylsuccinate oat beta-glucan micelles with an emphasis on degree of substitution and molecular weight. J Agric Food Chem 62:7532–40.
  • Liu J, Fan C, Yu L, et al. (2016). Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells. Cytokine 77:88–97.
  • Liu Q, Chen J, Qin Y, et al. (2019). Encapsulation of pterostilbene in nanoemulsions: influence of lipid composition on physical stability, in vitro digestion, bioaccessibility, and Caco-2 cell monolayer permeability. Food Funct 10:6604–14.
  • Liu Y, Li K, Pan J, et al. (2010). Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 31:330–8.
  • Liu Y, You Y, Lu J, et al. (2020). Recent advances in synthesis, bioactivity, and pharmacokinetics of pterostilbene, an important analog of resveratrol. Molecules 25:5166.
  • Lu L, Shen X, Tao B, et al. (2019). The nanoparticle-facilitated autophagy inhibition of cancer stem cells for improved chemotherapeutic effects on glioblastomas. J Mater Chem B 7:2054–62.
  • Luiz MT, Delello Di Filippo L, Tofani LB, et al. (2021). Highlights in targeted nanoparticles as a delivery strategy for glioma treatment. Int J Pharm 604:120758.
  • Luo D, Wang X, Zhong X, et al. (2022). MPEG-PCL nanomicelles platform for synergistic metformin and chrysin delivery to breast cancer in mice. ACAMC 22:280–93.
  • Ma Z, Zhang X, Xu L, et al. (2019). Pterostilbene: mechanisms of its action as oncostatic agent in cell models and in vivo studies. Pharmacol Res 145:104265.
  • Matsumoto Y, Miyamoto Y, Cabral H, et al. (2016). Enhanced efficacy against cervical carcinomas through polymeric micelles physically incorporating the proteasome inhibitor MG132. Cancer Sci 107:773–81.
  • McCord E, Pawar S, Koneru T, et al. (2021). Folate receptors’ expression in gliomas may possess potential nanoparticle-based drug delivery opportunities. ACS Omega 6:4111–8.
  • Mei D, Chen B, He B, et al. (2019). Actively priming autophagic cell death with novel transferrin receptor-targeted nanomedicine for synergistic chemotherapy against breast cancer. Acta Pharm Sin B 9:1061–77.
  • Nakanishi T, Fukushima S, Okamoto K, et al. (2001). Development of the polymer micelle carrier system for doxorubicin. J Control Release 74:295–302.
  • Nour SA, Abdelmalak NS, Naguib MJ, et al. (2016). Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv 23:3681–95.
  • Pardridge WM. (2003). Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3:90–105, 51.
  • Pardridge WM. (2007). Drug targeting to the brain. Pharm Res 24:1733–44.
  • Rana I, Khan N, Ansari MM, et al. (2020). Solid lipid nanoparticles-mediated enhanced antidepressant activity of duloxetine in lipopolysaccharide-induced depressive model. Colloids Surf B Biointerfaces 194:111209.
  • Raval N, Maheshwari R, Shukla H, et al. (2021). Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. Mater Sci Eng C Mater Biol Appl 126:112186.
  • Riche DM, McEwen CL, Riche KD, et al. (2013). Analysis of safety from a human clinical trial with pterostilbene. J Toxicol 2013:463595.
  • Richter A, Olbrich C, Krause M, et al. (2010). Polymeric micelles for parenteral delivery of sagopilone: physicochemical characterization, novel formulation approaches and their toxicity assessment in vitro as well as in vivo. Eur J Pharm Biopharm 75:80–9.
  • Romio M, Morgese G, Trachsel L, et al. (2018). Poly(2-oxazoline)-pterostilbene block copolymer nanoparticles for dual-anticancer drug delivery. Biomacromolecules 19:103–11.
  • Ruan S, Zhou Y, Jiang X, Gao H. (2021). Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci (Weinh) 8:2004025.
  • Ruan SB, Qin L, Xiao W, et al. (2018). Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery. Adv Funct Mater 28:1802227.
  • Rubab S, Naeem K, Rana I, et al. (2021). Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model. Int J Pharm 603:120670.
  • Ruiz MJ, Fernandez M, Pico Y, et al. (2009). Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. J Agric Food Chem 57:3180–6.
  • Shahid A, Bhatt P, Miller A, Sutariya V. (2021). Honokiol-loaded methoxy poly (ethylene glycol) polycaprolactone micelles for the treatment of age-related macular degeneration. Assay Drug Dev Technol 19:350–60.
  • Silva F, Figueiras A, Gallardo E, et al. (2014). Strategies to improve the solubility and stability of stilbene antioxidants: a comparative study between cyclodextrins and bile acids. Food Chem 145:115–25.
  • Song K, Xin M, Zhang F, et al. (2020). Novel ultrasmall nanomicelles based on rebaudioside A: A potential nanoplatform for the ocular delivery of pterostilbene. Int J Pharm 577:119035.
  • Valenzuela-Oses JK, Garcia MC, Feitosa VA, et al. (2017). Development and characterization of miltefosine-loaded polymeric micelles for cancer treatment. Mater Sci Eng C Mater Biol Appl 81:327–33.
  • Wang F, Chen Y, Zhang D, et al. (2012). Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles. Int J Nanomedicine 7:325–37.
  • Wei W, Li S, Xu H, et al. (2018). MPEG-PCL copolymeric micelles for encapsulation of azithromycin. AAPS PharmSciTech 19:2041–7.
  • Wei W, Zhang Y, Li R, et al. (2022). Oral delivery of pterostilbene by L-arginine-mediated “nano-bomb” carrier for the treatment of ulcerative colitis. Int J Nanomedicine 17:603–16.
  • Wei X, Gong C, Gou M, et al. (2009). Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 381:1–18.
  • Weitman SD, Lark RH, Coney LR, et al. (1992). Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–401.
  • Xie Z, Guan H, Chen X, et al. (2007). A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer. J Control Release 117:210–6.
  • Yang CN, Peng WY, Lin LC, Tsai TH. (2021). Protein unbound pharmacokinetics of ambroxol in the blood and brains of rats and the interaction of ambroxol with Polygala tenuifolia by multiple microdialysis. J Ethnopharmacol 269:113764.
  • Yang XB, Wang XB, Pan WS, et al. (2011). Optimization and characterization of dry powder of fanhuncaoin for inhalation based on selection of excipients. Chem Pharm Bull (Tokyo) 59:929–37.
  • Yang Y, Yun K, Li Y, et al. (2021). Self-assembled multifunctional polymeric micelles for tumor-specific bioimaging and synergistic chemo-phototherapy of cancer. Int J Pharm 602:120651.
  • Yao H, Zhao J, Wang Z, et al. (2020). Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: an effective strategy for application of a poisonous traditional Chinese medicine. Colloids Surf B Biointerfaces 196:111285.
  • Zhang Y, Shang Z, Gao C, et al. (2014). Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech 15:1000–8.
  • Zhao L, Du J, Duan Y, et al. (2012a). Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces 97:101–8.
  • Zhao P, Wang H, Yu M, et al. (2012b). Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm 81:248–56.
  • Zhao X, Shi A, Ma Q, et al. (2021). Nanoparticles prepared from pterostilbene reduce blood glucose and improve diabetes complications. J Nanobiotechnology 19:191.
  • Zheng N, Dai W, Zhang H, et al. (2015). Lanreotide-conjugated PEG-DSPE micelles: an efficient nanocarrier targeting to somatostatin receptor positive tumors. J Drug Target 23:67–78.
  • Zou Y, Wang X, Bi D, et al. (2021). Pterostilbene nanoparticles with small particle size show excellent anti-breast cancer activity in vitro and in vivo. Nanotechnology 32:325102.
  • Zuo J, Gao Y, Bou-Chacra N, Löbenberg R. (2014). Evaluation of the DDSolver software applications. Biomed Res Int 2014:204925.