1,731
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

K. Zheng et al. Gold-nanoparticle-based multistage drug delivery system for antitumor therapy

, , , , , , , , , , , , & ORCID Icon show all
Pages 3186-3196 | Received 29 Jul 2022, Accepted 18 Sep 2022, Published online: 13 Oct 2022

References

  • Anderson NM, Simon MC. (2020). The tumor microenvironment. Curr Biol 30:R921–R925.
  • Bauleth-Ramos T, Shih T-Y, Shahbazi M-A, et al. (2019). Acetalated dextran nanoparticles loaded into an injectable alginate cryogel for combined chemotherapy and cancer vaccination. Adv Funct Mater 29:1903686.
  • Boedtkjer E, Pedersen SF. (2020). The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol 82:103–26.
  • Chen T, Gu T, Cheng L, et al. (2020). Porous Pt nanoparticles loaded with doxorubicin to enable synergistic chemo-/electrodynamic therapy. Biomaterials 255:120202.
  • Chiu HI, Ayub AD, Mat Yusuf SNA, et al. (2020). Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics 12:38.
  • Curley CT, Mead BP, Negron K, et al. (2020). Augmentation of brain tumor interstitial flow via focused ultrasound promotes brain-penetrating nanoparticle dispersion and transfection. Sci Adv 6:eaay1344.
  • Ding Y, Xu Y, Yang W, et al. (2020). Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today 35:100970.
  • Fay F, Quinn DJ, Gilmore BF, et al. (2010). Gene delivery using dimethyldidodecylammonium bromide-coated PLGA nanoparticles. Biomaterials 31:4214–22.
  • Gong C, Zhang X, Shi M, et al. (2021). Tumor exosomes reprogrammed by low pH are efficient targeting vehicles for smart drug delivery and personalized therapy against their homologous tumor. Adv Sci (Weinh) 8:2002787.
  • Haase K, Offeddu GS, Gillrie MR, Kamm RD. (2020). Endothelial regulation of drug transport in a 3D vascularized tumor model. Adv Funct Mater 30:2002444.
  • Han R, Xiao Y, Yang Q, et al. (2021). Ag2S nanoparticle-mediated multiple ablations reinvigorates the immune response for enhanced cancer photo-immunotherapy. Biomaterials 264:120451.
  • Han X, Caron JM, Brooks PC. (2020). Cryptic collagen elements as signaling hubs in the regulation of tumor growth and metastasis. J Cell Physiol 235:9005–20.
  • He S, Jiang Y, Li J, Pu K. (2020). Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer. Angew Chem Int Ed Engl 59:10633–8.
  • Hu J, Yuan X, Wang F, et al. (2021). The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chin Chem Lett 32:1341–7.
  • Jahanban-Esfahlan R, Derakhshankhah H, Haghshenas B, et al. (2020). A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int J Biol Macromol 156:438–45.
  • Jia L, Li X, Liu H, et al. (2021). Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and pH-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles. Nano Today 36:101022.
  • Jin H, Zhu T, Huang X, et al. (2019). ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: light-triggered size-reducing and enhanced tumor penetration. Biomaterials 211:68–80.
  • Knipe JM, Peppas NA. (2014). Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 1:57–65.
  • Kolosovas-Machuca ES, Cuadrado A, Ojeda-Galván HJ, et al. (2019). Detection of histamine dihydrochloride at low concentrations using Raman spectroscopy enhanced by gold nanostars colloids. Nanomaterials 9:211.
  • Kwon K, Kim J-C. (2016). Redox-responsive alginate microsphere containing cystamine. J Biomater Sci Polym Ed 27:1520–33.
  • Liu P, Wang Y, Liu Y, et al. (2020). S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment. Theranostics 10:6774–89.
  • Liu R, Hu C, Yang Y, et al. (2019). Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 9:410–20.
  • Liu R, Xiao W, Hu C, et al. (2018). Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J Control Release 278:127–39.
  • Lv Z, He S, Wang Y, Zhu X. (2021). Noble metal nanomaterials for NIR-triggered photothermal therapy in cancer. Adv Healthcare Mater 10:2001806.
  • Mirrahimi M, Abed Z, Beik J, et al. (2019). A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 143:178–85.
  • Mohtaram NK, Montgomery A, Willerth SMJBm. (2013). Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed Mater 8:022001.
  • Ou H, Li J, Chen C, et al. (2019). Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Sci China Mater 62:1740–58.
  • Raemdonck K, Demeester J, Smedt SD. (2009). Advanced nanogel engineering for drug delivery. Soft Matter 5:707–15.
  • Rawat M, Saraf S. (2009). Formulation optimization of double emulsification method for preparation of enzyme-loaded Eudragit S100 microspheres. J Microencapsul 26:306–14.
  • Ruan S, Cao X, Cun X, et al. (2015). Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials 60:100–10.
  • Ryu JH, Yoon HY, Sun I-C, et al. (2020). Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv Mater 32:2002197.
  • Sheth V, Wang L, Bhattacharya R, et al. (2021). Strategies for delivering nanoparticles across tumor blood vessels. Adv Funct Mater 31:2007363.
  • Shu M, Tang J, Chen L, et al. (2021). Tumor microenvironment triple-responsive nanoparticles enable enhanced tumor penetration and synergetic chemo-photodynamic therapy. Biomaterials 268:120574.
  • Skotland T, Sandvig K. (2021). Transport of nanoparticles across the endothelial cell layer. Nano Today 36:101029.
  • Sutthapitaksakul L, Sriamornsak P. (2019). Influence of process parameters on the characteristics of hydrophilic drug-loaded microparticles through double emulsion solvent evaporation technique. KEM 819:252–7.
  • Tu Y, Dong Y, Wang K, et al. (2020). Intercellular delivery of bioorthogonal chemical receptors for enhanced tumor targeting and penetration. Biomaterials 259:120298.
  • Vaahtomeri K, Alitalo K. (2020). Lymphatic vessels in tumor dissemination versus immunotherapy. Cancer Res 80:3463–5.
  • Volchan E, Rocha-Rego V, Bastos AF, et al. (2017). Immobility reactions under threat: a contribution to human defensive cascade and PTSD. Neurosci Biobehav Rev 76:29–38.
  • Wang C, Vázquez-González M, Fadeev M, et al. (2020). Thermoplasmonic-triggered release of loads from DNA-modified hydrogel microcapsules functionalized with Au nanoparticles or Au nanorods. Small 16:2000880.
  • Wang Y, Wang L, Yan M, et al. (2019). Plasmonic microgels of Au nanorods: self-assembly and applications in chemophotothermo-synergistic cancer therapy. J Colloid Interface Sci 536:728–36.
  • Wang Y, Zhang J, Lv X, et al. (2020). Mitoxantrone as photothermal agents for ultrasound/fluorescence imaging-guided chemo-phototherapy enhanced by intratumoral H2O2-induced CO. Biomaterials 252:120111.
  • Xu Y, Zhao J, Zhang Z, et al. (2020). Preparation of electrospray ALG/PDA–PVP nanocomposites and their application in cancer therapy. Soft Matter 16:132–41.
  • Yu W, He X, Yang Z, et al. (2019). Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 217:119309.
  • Yu W, Liu R, Zhou Y, Gao HJ. (2020). Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent Sci 6:100–16.
  • Zhang C, Shi G, Zhang J, et al. (2017). Redox-and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy. Nanoscale 9:3304–14.
  • Zhang Z, Wang R, Huang X, et al. (2020). Self-delivered and self-monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of HIF-1α and depletion of GSH. ACS Appl Mater Interfaces 12:5680–94.
  • Zhou D, Liu S, Hu Y, et al. (2020). Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J Mater Chem B 8:3801–13.
  • Zhou T, Li J, Jia X, et al. (2018). pH/reduction dual-responsive oxidized alginate-doxorubicin (mPEG-OAL-DOX/Cys) prodrug nanohydrogels: effect of complexation with cyclodextrins. Langmuir 34:416–24.