147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

γ-Cyclodextrin hydrogel for the sustained release of josamycin for potential ocular application

, , , , , , , , , , , , & show all
Article: 2361168 | Received 23 Jan 2024, Accepted 14 May 2024, Published online: 20 Jun 2024

References

  • Antlsperger G, Schmid G. (1996). Toxicological comparison of cyclodextrins. In Proceedings of the eighth international symposium on cyclodextrins. Dordrecht: Springer, 149–55. doi: 10.1007/978-94-011-5448-2_32.
  • Bell K, Padua Soares Bezerra B. d, Mofokeng M, et al. (2021). Learning from the past: mitomycin C use in trabeculectomy and its application in bleb-forming minimally invasive glaucoma surgery. Surv Ophthalmol 66:109–23. doi: 10.1016/j.survophthal.2020.05.005.
  • Bodelier VMW, van Haeringen NJ, Klaver PSY. (1993). Species differences in tears; Comparative investigation in the chimpanzee (Pan troglodytes). Primates 34:77–84. doi: 10.1007/BF02381283.
  • Chatzara A, Chronopoulou I, Theodossiadis G, et al. (2019). Xen implant for glaucoma treatment: a review of the literature. Semin Ophthalmol 34:93–7. doi: 10.1080/08820538.2019.1581820.
  • Cheng T, Zhao Y, Li X, et al. (2007). Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model 47:2140–8. doi: 10.1021/ci700257y.
  • El Harti J, Cherrah Y, Bouklouze A. (2012). Improvement of water solubility of josamycin by inclusion complex with γ-cyclodextrin. ISRN Analyt Chem 2012:1–6. doi: 10.5402/2012/673564.
  • Fang G, Wang Q, Yang X, et al. (2022). γ-Cyclodextrin-based polypseudorotaxane hydrogels for ophthalmic delivery of flurbiprofen to treat anterior uveitis. Carbohydr Polym 277:118889. doi: 10.1016/j.carbpol.2021.118889.
  • Fu AS, Thatiparti TR, Saidel GM, et al. (2011). Experimental studies and modeling of drug release from a tunable affinity-based drug delivery platform. Ann Biomed Eng 39:2466–75. doi: 10.1007/s10439-011-0336-z.
  • Gudmundsdottir BS, Petursdottir D, Asgrimsdottir GM, et al. (2014). γ-Cyclodextrin nanoparticle eye drops with dorzolamide: Effect on intraocular pressure in man. J Ocul Pharmacol Ther 30:35–41. doi: 10.1089/jop.2013.0060.
  • Haley RM, Zuckerman ST, Dakhlallah H, et al. (2020). Resveratrol delivery from implanted cyclodextrin polymers provides sustained antioxidant effect on implanted neural probes. Int J Mol Sci 21:3579. doi: 10.3390/ijms21103579.
  • Helmers G, Munteanu C, Löw U, Seitz B. (2022). Trabeculectomy with mitomycin C and Ologen® implant in comparison to classical trabeculectomy. Ophthalmologie 120:20–6. doi: 10.1007/s00347-022-01686-4.
  • Imai H, Misra GP, Wu L, et al. (2015). Subconjunctivally implanted hydrogels for sustained insulin release to reduce retinal cell apoptosis in diabetic rats. Invest Ophthalmol Vis Sci 56:7839–46. doi: 10.1167/iovs.15-16998.
  • International Organization for Standardization. (2009). ISO 10993-5 biological evaluation of medical devices: Part 5: Tests for in vitro cytotoxicity. Geneva.
  • International Organization for Standardization. (2021). ISO 10993-12 biological evaluation of medical devices: Part 5: Sample preparation and reference materials. Geneva.
  • Jumelle C, Gholizadeh S, Annabi N, Dana R. (2020). Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 321:1–22. doi: 10.1016/j.jconrel.2020.01.057.
  • Kapetanakis VV, Chan MPY, Foster PJ, et al. (2016). Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): A systematic review and meta-analysis. Br J Ophthalmol 100:86–93. doi: 10.1136/bjophthalmol-2015-307223.
  • Kopp F, Eickner T, Polei S, et al. (2017). Ultrahigh field MR imaging of a subconjunctival anti-glaucoma drug delivery system in a rabbit model. Sci Rep 7:15780. doi: 10.1038/s41598-017-15954-w.
  • Lama PJ, Fechtner RD. (2003). Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol 48:314–46. doi: 10.1016/S0039-6257(03)00038-9.
  • Lawrence WH, Malik M, Turner JE, Autian J. (1972). Toxicity profile of epichlorohydrin. J Pharm Sci 61:1712–6. doi: 10.1002/jps.2600611103.
  • Leroy-Lechat F, Wouessidjewe D, Andreux J, et al. (1994). Evaluation of the cytotoxicity of cyclodextrins and hydroxypropylated derivatives. Int J Pharm 101:97–103. doi: 10.1016/0378-5173(94)90080-9.
  • Liu J, Tian B, Liu Y, Wan J, ‑B. (2021). Cyclodextrin-containing hydrogels: a review of preparation method, drug delivery, and degradation behavior. Int J Mol Sci 22:13516. doi: 10.3390/ijms222413516.
  • Loftsson T, Hreinsdóttir D, Másson M. (2005). Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28. doi: 10.1016/j.ijpharm.2005.05.042.
  • Loftsson T, Stefánsson E. (2017). Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm 531:413–23. doi: 10.1016/j.ijpharm.2017.04.010.
  • Lumholdt LR, Holm R, Jørgensen EB, Larsen KL. (2012). In vitro investigations of α-amylase mediated hydrolysis of cyclodextrins in the presence of ibuprofen, flurbiprofen, or benzoapyrene. Carbohydr Res 362:56–61. doi: 10.1016/j.carres.2012.09.018.
  • Luo T, Tan B, Zhu L, et al. (2022). A review on the design of hydrogels with different stiffness and their effects on tissue repair. Front Bioeng Biotechnol 10:817391. doi: 10.3389/fbioe.2022.817391.
  • Machín R, Isasi JR, Vélaz I. (2013). Hydrogel matrices containing single and mixed natural cyclodextrins. Mechanisms of drug release. Eur Polym J 49:3912–20. doi: 10.1016/j.eurpolymj.2013.08.020.
  • Mallone F, Costi R, Marenco M, et al. (2021). Understanding drivers of ocular fibrosis: current and future therapeutic perspectives. Int J Mol Sci 22:11748. doi: 10.3390/ijms222111748.
  • Marshall JJ, Miwa I. (1981). Kinetic difference between hydrolyses of γ-cyclodextrin by human salivary and pancreatic α-amylases. Biochim Biophys Acta 661:142–7. doi: 10.1016/0005-2744(81)90093-0.
  • Mennini N, Casella G, Cirri M, et al. (2016). Development of cyclodextrin hydrogels for vaginal delivery of dehydroepiandrosterone. J Pharm Pharmacol 68:762–71. doi: 10.1111/jphp.12549.
  • Osono T, Umezawa H. (1971). Josamycin, a new macrolide antibiotic of resistance non-inducing type. In: Mitsuhashi S, ed. Drug action and drug resistance in bacteria. Tokyo, Japan: University of Tokyo Press. 41–115.
  • Qin Q, Zhang Chengshou Yu Naiji Jia F, Liu Xin Zhang Q, et al. (2023). Development and material characteristics of glaucoma surgical implants. In Adv Ophthalmol Pract Res 3:171–9. doi: 10.1016/j.aopr.2023.09.001.
  • R Core Team. (2022). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/.
  • Rafiei F, Tabesh H, Farzad F. (2020). Sustained subconjunctival drug delivery systems: Current trends and future perspectives. Int Ophthalmol 40:2385–401. doi: 10.1007/s10792-020-01391-8.
  • Reibaldi A, Uva MG, Longo A. (2008). Nine-year follow-up of trabeculectomy with or without low-dosage mitomycin-c in primary open-angle glaucoma. Br J Ophthalmol 92:1666–70. doi: 10.1136/bjo.2008.140939.
  • Reitsamer H, Sng C, Vera V, et al. (2019). Two-year results of a multicenter study of the ab interno gelatin implant in medically uncontrolled primary open-angle glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology 257:983–96. doi: 10.1007/s00417-019-04251-z.
  • Renard E, Deratani A, Volet G, Sebille B. (1997). Preparation and characterization of water soluble high molecular weight β-cyclodextrin-epichlorohydrin polymers. Eur Polym J 33:49–57. doi: 10.1016/S0014-3057(96)00123-1.
  • Rohner NA, Nguyen D, & Recum HA. von (2020). Affinity effects on the release of non-conventional antifibrotics from polymer depots. Pharmaceutics 12:275. doi: 10.3390/pharmaceutics12030275.
  • RStudio Team. (2020). RStudio: Integrated development for R [computer software]. Boston, MA: RStudio, PBC. Available at: http://www.rstudio.com/.
  • S Khouri A, Huang G, Y Huang L. (2017). Intraoperative injection vs sponge-applied mitomycin c during trabeculectomy: one-year study. J Curr Glaucoma Pract 11:101–6. doi: 10.5005/jp-journals-10028-1233.
  • Saarinen-Savolainen P, Järvinen T, Araki-Sasaki K, et al. (1998). Evaluation of cytotoxicity of various ophthalmic drugs, eye drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line. Pharm Res 15:1275–80. doi: 10.1023/a:1011956327987.
  • Saokham P, Loftsson T. (2017). γ-Cyclodextrin. Int J Pharm 516:278–92. doi: 10.1016/j.ijpharm.2016.10.062.
  • Schlunck G, Meyer-ter-Vehn T, Klink T, Grehn F. (2016). Conjunctival fibrosis following filtering glaucoma surgery. Exp Eye Res 142:76–82. doi: 10.1016/j.exer.2015.03.021.
  • Schwartz GF, Quigley HA. (2008). Adherence and persistence with glaucoma therapy. Surv Ophthalmol 53 Suppl1:S57–S68. doi: 10.1016/j.survophthal.2008.08.002.
  • Seibold LK, Sherwood MB, Kahook MY. (2012). Wound modulation after filtration surgery. Surv Ophthalmol 57:530–50. doi: 10.1016/j.survophthal.2012.01.008.
  • Shin I-S, Park N-H, Lee J-C, et al. (2010). One-generation reproductive toxicity study of epichlorohydrin in Sprague-Dawley rats. In. Drug Chem Toxicol 33:291–301. doi: 10.3109/01480541003734030.
  • Sripetch S, Jansook P, Loftsson T. (2020). Effect of porcine pancreatic α-amylase on dexamethasone release from aqueous solution containing natural γ-cyclodextrin. Int J Pharm 585:119452. doi: 10.1016/j.ijpharm.2020.119452.
  • Stahnke T, Gajda-Deryło B, Jünemann AG, et al. (2020). Suppression of the TGF-β pathway by a macrolide antibiotic decreases fibrotic responses by ocular fibroblasts in vitro. R Soc Open Sci 7:200441. doi: 10.1098/rsos.200441.
  • Stahnke T, Kowtharapu BS, Stachs O, et al. (2017). Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. Plos ONE 12:e0172592. doi: 10.1371/journal.pone.0172592.
  • Stahnke T, Löbler M, Kastner C, et al. (2012). Different fibroblast subpopulations of the eye: A therapeutic target to prevent postoperative fibrosis in glaucoma therapy. Exp Eye Res 100:88–97. doi: 10.1016/j.exer.2012.04.015.
  • van Haeringen NJ, Ensink F, Glasius E. (1975). Amylase in human tear fluid: Origin and characteristics, compared with salivary and urinary amylases. Exp Eye Res 21:395–403. doi: 10.1016/0014-4835(75)90049-4.
  • Vinod K, Gedde SJ, Feuer WJ, et al. (2017). Practice preferences for glaucoma surgery: a survey of the american glaucoma society. J Glaucoma 26:687–93. doi: 10.1097/IJG.0000000000000720.
  • Wintgens V, Amiel C. (2010). Water-soluble γ-cyclodextrin polymers with high molecular weight and their complex forming properties. Eur Polym J 46:1915–22. doi: 10.1016/j.eurpolymj.2010.06.014.
  • Wolters JEJ, van Mechelen RJS, Al Majidi R, et al. (2021). History, presence, and future of mitomycin C in glaucoma filtration surgery. Curr Opin Ophthalmol 32:148–59. doi: 10.1097/ICU.0000000000000729.
  • Worthington KS, Wiley LA, Bartlett AM, et al. (2014). Mechanical properties of murine and porcine ocular tissues in compression. Exp Eye Res 121:194–9. doi: 10.1016/j.exer.2014.02.020.
  • Yang SY, Hoonor R, Jin H-S, Kim J. (2013). Synthesis and characterization of cationic and anionic cyclodextrin oligomers and their use in layer-by-layer film formation. Bull Korean Chem Soc 34:2016–22. doi: 10.5012/bkcs.2013.34.7.2016.
  • Yoon PS, Singh K. (2004). Update on antifibrotic use in glaucoma surgery, including use in trabeculectomy and glaucoma drainage implants and combined cataract and glaucoma surgery. Curr Opin Ophthalmol 15:141–6. doi: 10.1097/00055735-200404000-00015.
  • Zelefsky JR, Hsu W, ‑C, Ritch R. (2008). Biodegradable collagen matrix implant for trabeculectomy. Expert Rev Ophthalmol 3:613–7. doi: 10.1586/17469899.3.6.613.