116
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

AN AMPEROMETRIC TYROSINASE INHIBITION-BASED BIOSENSOR FOR THE DETERMINATION OF SULFITE IN NATURAL WATERS

, &

REFERENCES

  • Kalimuthu , P. ; Tkac , J. ; Kappler , U.;. Davis , J.J. ; Brenhardt , P.V. Highly Sensitive and Stable Electrochemical Sulfite Biosensor Incorporating a Bacterial Sulfite Dehydrogenase . Anal. Chem. 2010 , 82 , 7374 – 7379 .
  • Zhou , H. ; Yang , W. ; Sun , C. Amperometric Sulfite Sensor Based on Multiwalled Carbon Nanotubes/Ferrocene-Branched Chitosan Composites . Talanta 2008 , 77 , 366 – 371 .
  • Abass , A.K. ; Hart , J.P. ; Cowell , D. Development of an Amperometric Sulfite Biosensor based on Sulfite Oxidase with Cytochrome c, as Electron Acceptor, and a Screen-Printed Transducer . Sens. Actuators B 2000 , 62 , 148 – 153 .
  • Safavi , A. ; Maleki , N. ; Moomeni , S. ; Tajabadi , F. Highly Improved Electrocatalytic Behavior of Sulfite at Carbon Ionic Liquid Electrode: Application to the Analysis of Some Real Samples . Anal. Chim. Acta 2008 , 625 , 8 – 12 .
  • American Public Health Association. Standard Methods for the Examination of Water and Wastewater , 19th ed., APHA : Washington DC , 1999.
  • Zuo , Y. ; Chen , H. Simultaneous Determination of Sulfite, Sulfite, and Hydroxymethanesulfonate in Atmospheric Waters by Ion-Pair HPLC Technique . Talanta 2003 , 59 , 875 – 881 .
  • Afkhami , A. ; Sarlak , N. Design and Characteristics of a Sulfide and Sulfite Optode based on Immobilization of Methyl Violet on a Triacetylcellulose Membrane . Sens. Actuators B 2007 , 24 , 285 – 289 .
  • Yin , L.Q. ; Yuan , D.X. ; Zhang , M. Determination of Sulfite in Water Samples by Flow Injection Analysis with Fluorescence Detection . Chin. Chem. Lett. 2010 , 21 , 1457 – 1461 .
  • Trenerry , V.C. The Determination of the Sulphite Content of Some Foods and Beverages by Capillary Electrophoresis . Food Chem. 1996 , 55 , 299 – 303 .
  • Spricigo , R. ; Dronov , R. ; Lisdat , F. ; Leimkuhler , S. ; Scheller , F.W. ; Wollenberger , U. Electrocatalytic Sulfite Biosensor with Human Sulfite Oxidase Co-immobilized with Cytochrome c in a Polyelectrolyte-Containing Multilayer . Anal. Bioanal. Chem. 2009 , 393 , 225 – 233 .
  • Sartori , E.R. ; Vicentini , F.C. ; Fatibello-Fihlo , O. Indirect Determination of Sulfite using a Polyphenol Oxidase Biosensor based on a Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes and Gold Nanoparticles within a Poly(allylamine Hydrochloride) Film . Talanta 2011 , 87 , 235 – 242 .
  • Dinckaya , E. ; Sezginiturk , M.K. ; Akyilmaz , E. ; Ertas , F.N. Sulfite Determination using Sulfite Oxidase Biosensor based Glassy Carbon Electrode Coated with Thin Mercury Film . Food Chem. 2007 , 101 , 1540 – 1544 .
  • Pundir , Ch.S. ; Rawal , R. Determination of Sulfite with Emphasis on Biosensing Methods: A Review . Anal. Bioanal. Chem. 2013 , 405 , 3049 – 3062 .
  • Filik , H. ; Cetintas , G. Determination of Sulfite in Water and Dried Fruit Samples by Dispersive Liquid–Liquid Microextraction Combined with UV–Vis Fiber Optic Linear Array Spectrophotometry . Food Anal. Meth. 2012 , 5 , 1362 – 1367 .
  • Soares , L.A. ; Yingzi , W. ; de Silveira , T.F.S. ; Silvestrini , D.R. ; Bicalho , U.O. ; Filho , N.L.D. ; do Carmo , D.R. A Cubic Silsesquioxane Modified With Purpald®: Preparation, Characterization and a Voltammetric Application for Determination of Sulfite . Int. J. Electrochem. Sci. 2013 , 8 , 7565 – 7580 .
  • Arbab-Zavar , M.H. ; Rounaghi , G.H. ; Rajabzadeh , S. ; Ashraf , N. Development of Vapor Generation Combined with Potentiometric Detection for Determination of Sulfite in Beverages . Food Measure 2013 , 7 , 75 – 80 .
  • Rawal , R. ; Pundir , C.S. Development of an Amperometric Sulfite Biosensor based on SOx/PBNPs/PPY Modified ITO Electrode . Int. J. Biolog. Macromol. 2012 , 51 , 449 – 455 .
  • Rawal , R. ; Pundir , C.S. Development of Electrochemical Sulfite Biosensor based on SOX/PBNPs/PPY Modified Au Electrode . Biochem. Eng. J. 2013 , 71 , 30 – 37 .
  • Duran , N. ; Rosa , M.A. ; D'Annibale , A. ; Gianfreda , L. Applications of Laccases and Tyrosinaseosinases (Phenoloxidases) Immobilized on Different Supports: A Review . Microb. Technol. Enzym. 2002 , 31 , 907 – 931 .
  • Litescu , S.C. ; Eremia , S. ; Radu , G.L. Biosensors for the Determination of Phenolic Metabolites . Adv. Exp. Med. Biol. 2010 , 698 , 234 – 240 .
  • Nadifiyine , S. ; Haddam , M. ; Mandli , J. ; Chadel , S. ; Blanchard , C.C. ; Marty , J.L. ; Amine , A. Amperometric Biosensor based on Tyrosinase Immobilized on to a Carbon Black Paste Electrode for Phenol Determination in Olive Oil. Anal. Lett. 2013 46 ( 17 ), 2705 – 2726.
  • Shleev , S. ; Tkac , J. ; Christenson , A. ; Ruzgas , T. ; Yaropolov , A.I. ; Whittaker , J.W. ; Gorton , L. Direct Electron Transfer between Copper-Containing Proteins and Electrodes. Biosens. Bioelectron. 2005 20 ( 12 ), 2517 – 2554.
  • Burestedt , E. ; Narvaez , A. ; Ruzgas , T. ; Gorton , L. ; Emnéus , J. ; Domínguez , E. ; Marko-Varga , G. Rate-Limiting Steps of Tyrosinase-Modified Electrodes for the Detection of Catechol. Anal. Chem. 1996 68 ( 9 ), 1605 – 1611.
  • Li , S. ; Tan , Y. ; Wang , P. ; Kann , J. Inhibition of Benzoic Acid on the Polyaniline–Polyphenol Oxidase Biosensor . Sens. Actuat. B 2010 , 144 , 18 – 22 .
  • Lopez , M.S.-P. ; Lopez-Ruiz , B. Inhibition Biosensor Based on Calcium Phosphate Materials for Detection of Benzoic Acid in Aqueous and Organic Media . Electroanal. 2011 , 23 , 264 – 271 .
  • Liu , T. ; Xu , M. ; Yin , H. ; Ai , S. ; Qu , X. ; Zong , S. A Glassy Carbon Electrode Modified with Grapheme and Tyrosinaseosinase Immobilized on Platinum Nanoparticles for Sensing Organophosphorus Pesticides . Microchim. Acta 2011 , 175 , 129 – 135 .
  • Yu , Z. ; Zhao , G. ; Liu , M. ; Lie , Y. ; Li , M. Fabrication of a Novel Atrazine Biosensor and its Subpart-per-Trillion Levels Sensitive Performance. Environ. Sci. Technol. 2010, 44, 7878–7883.
  • Vidal , J.C. ; Esteban , S. ; Gil , J. ; Castillo , J.R. A Comparative Study of Immobilization Methods of a Tyrosinaseosinase Enzyme on Electrodes and Their Application to the Detection of Dichlorvos Organophosphorus Insecticide . Talanta 2006 , 68 , 791 – 799 .
  • Asav , E. ; Yorganci , E. ; Akyilmaz , E. An Inhibition Type Amperometric Biosensor based on Tyrosinaseosinase Enzyme for Fluoride Determination . Talanta 2009 , 78 , 553 – 556 .
  • Sayavecra-Soto , L.A. ; Montgomery , M.W. Inhibition of Polyphenoloxidase by Sulfite . J. Food Sci. 1986 , 51 , 1531 – 1536 .
  • Nematollahi , D. ; Tammari , E. ; Karbasi , H. Electrooxidation of Catechols in the Presence of Sulfite: Presentation of a Facile and Green Method for Aromatic Sulfonation . Int. J. Electrochem. Sci. 2007 , 2 , 986 – 995 .
  • Sun , H.-J.; Wang. J. ; Tao , X.-M. ; Shi , J. ; Huang , M.-Z. ; Chen , Y. Purification and Characterization of Polyphenol Oxidase from Rape Flower . J. Agric. Food Chem. 2012 , 60 , 823 – 829 .
  • Wang , J. Sol–Gel Materials for Electrochemical Biosensors . Anal. Chim. Acta 1999 , 399 , 21 – 27 .
  • Yanez-Sedeno , P. ; Riu , J. ; Pingarron , J.M. ; Rius , F.X. Electrochemical Sensing based on Carbon Nanotubes . Trends Anal. Chem. 2010 , 29 , 939 – 953 .
  • Lad , A.N. ; Agrawal , Y.K. Multi-Wall Carbon Nanotube-based DNA Nanosensor for Determining Mitoxantrone-DNA Interaction in-vitro. Instrum. Sci. Technol. 2013 41 ( 3 ), 325 – 334.
  • Diaconu , M. ; Litescu , S.C. ; Radu , G.L. Bienzymatic Sensor based on the Use of Redox Enzymes and Chitosan-MWCNT Nanocomposite. Evaluation of Total Phenolic Content in Plant Extracts. Microchim. Acta 2011 172 ( 1 ), 177 – 184.
  • Demkiv , O. ; Smutok , O. ; Paryzhak , S. ; Gayda , G. ; Sultanov , Y. ; Guschin , D. ; Shkil , H. ; Schuhmann , W. ; Gonchar , M. Reagentless Amperometric Formaldehyde-Selective Biosensors based on the Recombinant Yeast Formaldehyde Dehydrogenase . Talanta 2008 , 76 , 837 – 846 .
  • Eremia , S.A. ; Vasilescu , I. ; Radoi , A. ; Litescu , S.C. ; Radu , G.L. Disposable Biosensor based on Platinum Nanoparticles-Reduced Graphene Oxide-Laccase Biocomposite for the Determination of Total Polyphenolic Content. Talanta 2013 110 , 164 – 170.
  • Guo , S. ; Wang , E. Noble Metal Nanomaterials: Controllable Synthesis and Application in Fuel Cells and Analytical Sensors . Nano Today 2011 , 6 , 240 – 264 .
  • Batra , B. ; Pundir , C.S. An Amperometric Glutamate Biosensor based on Immobilization of Glutamate Oxidase onto Carboxylated Multiwalled Carbon Nanotubes/Gold Nanoparticles/Chitosan Composite Film Modified Au electrode . Biosens. Bioelectron. 2013 , 47 , 496 – 501 .
  • Cai , H. ; Xu , C. ; He , P. ; Fang , Y. Colloid Au-Enhanced DNA Immobilization for the Electrochemical Detection of Sequence-Specific DNA . J. Electroanal. Chem. 2001 , 510 , 78 – 85 .
  • Kochana , J. ; Gala , A. ; Parczewski , A. ; Adamski , J. Titanium Dioxide Sol–Gel-Derived Tyrosinaseosinase-based Amperometric Biosensor for Determination of Phenolic Compounds in Water Samples. Examination of Interference Effects . Anal. Bioanal. Chem. 2008 , 391 , 1275 – 1281 .
  • Łuczak , T. Electroanalysis of Norepinephrine at Bare Gold Electrode Pure and Modified with Gold Nanoparticles and S-Functionalized Self-Assembled Layers in Aqueous Solution . Electroanal. 2009 , 21 , 1539 – 1549 .
  • Apetrei , C. ; Rodriguez-Mendez , M.L. ; De Saja , J.A. Amperometric Tyrosinaseosinase based Biosensor using an Electropolymerized Phosphate-Doped Polypyrrole Film as an Immobilization Support. Application for Detection of Phenolic Compounds . Electrochim. Acta 2011 , 56 , 8919 – 8925 .
  • Lee , J.M. ; Xu , G.-R. ; Kim , B.K. ; Choi , H.M. ; Lee , W.-Y. Amperometric Tyrosinaseosinase Biosensor Based on Carbon Nanotube-Doped Sol-Gel-Derived Zinc Oxide–Nafion Composite . Films Electroanal. 2011 , 23 , 962 – 970 .
  • Wang , Y. ; Hasebe , Y. Acridine Orange-Induced Signal Enhancement Effect of Tyrosinaseosinase-Immobilized Carbon-Felt-based Flow Biosensor for Highly Sensitive detection of monophenolic compounds . Anal. Bioanal. Chem. 2011 , 399 , 1151 – 1162 .
  • Wang , B. ; Zang , J. ; Dong , S. Silica Sol–Gel Composite Film as an Encapsulation Matrix for the Construction of an Amperometric Tyrosinaseosinase-based Biosensor Biosens. Bioelectron. 2000 , 13 , 397 – 402.
  • Pena , N. ; Reviejo , A.J. ; Pingarron , J.M. Detection of Phenolic Compounds in Flow Systems based on Tyrosinaseosinase-Modified Reticulated Vitreous Carbon Electrodes . Talanta 2001 , 55 , 179 – 187 .
  • Bisswanger , H. Enzyme Kinetics. Principles and Methods. 2nd ed. Wiley-VCH Verlag GmbH & Co. KgaA : Weinheim , 2008.
  • Kochana , J.; Kozak J. , Skrobisz , A. ; Woźniakiewicz , M. Tyrosinaseosinase Biosensor for Benzoic Acid Inhibition-based determination with the Use of a Flow-Batch Monosegmented Sequential Injection System . Talanta 2012 , 96 , 147 – 152 .
  • Hermanowicz , W. Physico-Chemical Studies of Waters and Sewages. 1st ed. Akrady : Warszawa , 1999 . (in Polish)
  • Rawal , R. ; Chawla , S. ; Dahiya , T. ; Pundir , C.S. Development of an Amperometric Sulfite biosensor basedon a Gold Nanoparticles/ Chitosan/ Multiwalled Carbon Nanotubes/ Polyaniline-Modified Gold Electrode . Anal. Bioanal. Chem. 2011 , 401 , 2599 – 2608 .
  • Situmorang , M. ; Hibbert , D.B.; Gooding J.J. , Barnett , D. A Sulfite Biosensor Fabricated using Electrodeposited Polytyrosinaseamine: Application to Wine Analysis . Analyst 1999 , 124 , 1775 – 1779 .
  • Rawal , R. ; Chawla , S. ; Pundir , Ch.S. An Electrochemical Sulfite Biosensor based on Gold Coated Magnetic Nanoparticles Modified Gold Electrode . Biosens. Bioelectron. 2012 , 31 , 144 – 150 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.