376
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

High-sensitivity fiber optic magnetic field sensor based on lossy mode resonance and hollow core-offset structure

, , , , , & ORCID Icon show all

References

  • Chen, Y.; Sun, W.; Zhang, Y.; Liu, G.; Luo, Y.; Dong, J.; Zhong, Y.; Zhu, W.; Yu, J.; Chen, Z. Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer. Nanomaterials 2019, 9, 785. DOI: 10.3390/nano9050785.
  • Jiang, Z.; Dong, J.; Hu, S.; Zhang, Y.; Chen, Y.; Luo, Y.; Zhu, W.; Qiu, W.; Lu, H.; Guan, H.; et al. High-Sensitivity Vector Magnetic Field Sensor Based on Side-Polished Fiber Plasmon and Ferrofluid. Opt. Lett. 2018, 43, 4743–4746. DOI: 10.1364/OL.43.004743.
  • Zhou, X.; Li, X.; Li, S.; An, G.; Cheng, T. Magnetic Field Sensing Based on SPR Optical Fiber Sensor Interacting with Magnetic Fluid. IEEE Trans. Instrum. Meas. 2019, 68, 234–239. DOI: 10.1109/TIM.2018.2834222.
  • Chen, F.; Jiang, Y. Fiber Optic Magnetic Field Sensor Based on the TbDyFe Rod. Meas. Sci. Technol. 2014, 25, 085106. DOI: 10.1088/0957-0233/25/8/085106.
  • Thakur, H. V.; Nalawade, S. M.; Gupta, S.; Kitture, R.; Kale, S. Photonic Crystal Fiber Injected with Fe3O4 Nanofluid for Magnetic Field Detection. Appl. Phys. Lett. 2011, 99, 161101–161103. DOI: 10.1063/1.3651490.
  • Sun, L.; Jiang, S.; Marciante, J. All-Fiber Optical Magnetic-Field Sensor based on Faraday Rotation in Highly Terbium-Doped Fiber. Opt. Express 2010, 18, 5407–5412. DOI: 10.1364/OE.18.005407.
  • Yang, M.; Dai, J.; Zhou, C.; Jiang, D. Optical Fiber Magnetic Field Sensors with TbDyFe Magnetostrictive Thin Films as Sensing Materials. Opt. Express 2009, 17, 20777–20782. DOI: 10.1364/OE.17.020777.
  • Nascimento, I.; Baptista, J. M.; Jorge, P.; Cruz, J.; Andrés, M. Intensity-Modulated Optical Fiber Sensor for AC Magnetic Field Detection. IEEE Photon. Technol. Lett. 2015, 27, 2461–2464. DOI: 10.1109/LPT.2015.2470135.
  • Paliwal, N.; John, J. Lossy Mode Resonance (LMR) Based Fiber Optic Sensors: A Review. IEEE Sensors J. 2015, 15, 5361–5371. DOI: 10.1109/JSEN.2015.2448123.
  • Yang, D.; Du, L.; Xu, Z.; Jiang, Y.; Xu, J.; Wang, M.; Bai, Y.; Wang, H. Magnetic Field Sensing Based on Tilted Fiber Bragg Grating Coated with Nanoparticle Magnetic Fluid. Appl. Phys. Lett. 2014, 104, 061903. DOI: 10.1063/1.4864649.
  • Zhang, R.; Pu, S.; Li, Y.; Zhao, Y.; Jia, Z.; Yao, J.; Li, Y. Mach-Zehnder Interferometer Cascaded with FBG for Simultaneous Measurement of Magnetic Field and Temperature. IEEE Sensors J. 2019, 19, 4079–4083. DOI: 10.1109/JSEN.2019.2899672.
  • Dong, S.; Pu, S.; Huang, J. Magnetic Field Sensing Based on Magneto-Volume Variation of Magnetic Fluids Investigated by Air-Gap Fabry-Perot Fiber Interferometers. Appl. Phys. Lett. 2013, 103, 111907. DOI: 10.1063/1.4821104.
  • Rodríguez-Schwendtner, E.; Navarrete, M.; Díaz-Herrera, N.; González-Cano, A.; Esteban, Ó. Advanced Plasmonic Fiber-Optic Sensor for High Sensitivity Measurement of Magnetic Field. IEEE Sensors J. 2019, 19, 7355–7364. DOI: 10.1109/JSEN.2019.2916157.
  • Lu, L.; Miao, Y.; Zhang, H.; Li, B.; Fei, C.; Zhang, K. Magnetic Sensor Based on Serial-Tilted-Tapered Optical Fiber for Weak-Magnetic-Field Measurement. Appl. Opt. 2020, 59, 2791–2796. DOI: 10.1364/AO.385083.
  • Wang, Q.; Jing, J. Y.; Wang, B. T. Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein a Co-Modified TFBG for Human IgG Detection. IEEE Trans. Instrum. Meas. 2019, 68, 3350–3357. DOI: 10.1109/TIM.2018.2875961.
  • Wang, Q.; Jing, J. Y.; Zhao, W. M.; Fan, X. C.; Wang, X. Z. A Novel Fiber-Based Symmetrical Long-Range Surface Plasmon Resonance Biosensor with High Quality Factor and Temperature Self-Reference. IEEE Trans. Nanotechnol. 2019, 18, 1137–1143. DOI: 10.1109/TNANO.2019.2947697.
  • Wang, Q.; Jing, J. Y.; Wang, X. Z.; Niu, L. Y.; Zhao, W. M. A D-Shaped Fiber Long-Range Surface Plasmon Resonance Sensor with High Q-Factor and Temperature Self-Compensation. IEEE Trans. Instrum. Meas. 2020, 69, 2218–2224. DOI: 10.1109/TIM.2019.2920187.
  • Wang, Q.; Wang, L. Lab-On-Fiber: Plasmonic Nano-Arrays for Sensing. Nanoscale 2020, 12, 7485–7499. DOI: 10.1039/d0nr00040j.
  • Wang, Q.; Song, H.; Zhu, A. S.; Qiu, F. M. A Label-Free and anti-Interference Dual-Channel SPR Fiber Optic Sensor with Self-Compensation for Biomarker Detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–7. DOI: 10.1109/TIM.2020.303962.
  • Chen, Y.; Hu, Y.; Cheng, H.; Yan, F.; Lin, Q.; Chen, Y.; Wu, P.; Chen, L.; Liu, G.; Peng, G.; et al. Side-Polished Single-Mode-Multimode-Single-Mode Fiber Structure for the Vector Magnetic Field Sensing. J. Lightwave Technol. 2020, 38, 5837–5843. DOI: 10.1109/JLT.2020.3003405.
  • Jing, J. Y.; Wang, Q.; Zhao, W. M.; Wang, B. T. Long-Range Surface Plasmon Resonance and Its Sensing Applications: A Review. Opt. Lasers Eng. 2019, 112, 103–118. DOI: 10.1016/j.optlaseng.2018.09.013.
  • Zamarreño, C. R.; Hernáez, M.; Sánchez, P.; Villar, I.; Matías, I.; Arregui, F. Optical Fiber Humidity Sensor Based on Lossy Mode Resonances Supported by TiO2/PSS Coatings. Procedia Eng. 2011, 25, 1385–1388. DOI: 10.1016/j.proeng.2011.12.342.
  • Zubiate, P.; Zamarreño, C. R.; Villar, I. D.; Matías, I.; Arregui, F. D-Shape Optical Fiber pH Sensor Based on Lossy Mode Resonances (LMRs). In IEEE Sensors, Busan, South Korea, 2015; pp 1–4. DOI: 10.1109/ICSENS.2015.7370421.
  • Zubiate, P.; Zamarreño, C. R.; Sanchez, P.; Matías, I.; Arregui, F. J. High Sensitive and Selective c-Reactive Protein Detection by Means of Lossy Mode Resonance Based Optical Fiber Devices. Biosens. Bioelectron. 2017, 93, 176–181. DOI: 10.1016/j.bios.2016.09.020.
  • Ascorbe, J.; Corres, J.; Arregui, F.; Matías, I. R. Magnetic Field Optical Sensor Based on Lossy Mode Resonances. In IEEE Sensors, Orlando, FL, 2016; pp 1–3. DOI: 10.1109/ICSENS.2016.7808493.
  • Arregui, F.; Villar, I.; Corres, J.; Goicoechea, J.; Zamarreño, C. R.; Elosúa, C.; Hernáez, M.; Rivero, P.; Socorro, A. B.; Urrutia, A.; et al. Fiber-Optic Lossy Mode Resonance Sensors. Procedia Eng. 2014, 87, 3–8. DOI: 10.1016/j.proeng.2014.11.253.
  • Zhang, W.; Chen, H.; Liu, Y.; Ma, M.; Li, S. Analysis of a Magnetic Field Sensor Based on Photonic Crystal Fiber Selectively Infiltrated with Magnetic Fluids. Opt. Fiber Technol. 2018, 46, 43–47. DOI: 10.1016/j.yofte.2018.09.003.
  • Zhao, Y.; Wu, D.; Lv, R.; Ying, Y. Tunable Characteristics and Mechanism Analysis of the Magnetic Fluid Refractive Index with Applied Magnetic Field. IEEE Trans. Magn. 2014, 50, 1–5. DOI: 10.1109/TMAG.2014.2310710.
  • Wang, Q.; Zhao, W. A Comprehensive Review of Lossy Mode Resonance-Based Fiber Optic Sensors. Opt. Lasers Eng. 2018, 100, 47–60. DOI: 10.1016/j.optlaseng.2017.07.009.
  • Deng, M.; Sun, X.; Han, M.; Li, D. Compact Magnetic-Field Sensor Based on Optical Microfiber Michelson Interferometer and Fe3O4 Nanofluid. Appl. Opt. 2013, 52, 734–741. DOI: 10.1364/AO.52.000734.
  • Villar, I. D.; Zamarreño, C. R.; Hernáez, M.; Arregui, F.; Matías, I. R. Lossy Mode Resonance Generation with Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications. J. Lightwave Technol. 2010, 28, 111–117. DOI: 10.1109/JLT.2009.2036580.
  • Liu, Q.; Li, S.; Wang, X. Sensing Characteristics of a MF-Filled Photonic Crystal Fiber Sagnac Interferometer for Magnetic Field Detecting. Sensors Actuators B Chem. 2017, 242, 949–955. DOI: 10.1016/j.snb.2016.09.160.
  • Xia, J.; Wang, F.; Luo, H.; Wang, Q.; Xiong, S. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure. Sensors 2016, 16, 620. DOI: 10.3390/s16050620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.