381
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Small furnace for the small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization of the high temperature carbonization of coal

, , , , , , , & show all

References

  • Zhu, T. Coal Chemistry (in Chinese); Metallurgical industry press, Beijing, 1984.
  • Schlosberg, R. H. Chemistry of Coal Conversion; Springer, New York, 1985.
  • Porter, H. C. Coal Carbonization and the World's Fuel. Ind. Eng. Chem. 1923, 15, 335–338. DOI: 10.1021/ie50160a002.
  • Lang, E. W.; Smith, H. G.; Bordenca, C. Carbonization of Agglomerating Coals in a Fluidized Bed. Ind. Eng. Chem. 1957, 49, 355–359. DOI: 10.1021/ie51392a024.
  • Stepanov, Y.; Mustafin, F. Coal Preparation for Carbonization at Central Cleaning Plants. Coke Chem. USSR 1972, 10, 11–14.
  • Hays, D.; Patrick, J.; Walker, A. Pore Structure Development during Coal Carbonization. 1. Behaviour of Single Coals. Fuel 1976, 55, 297–302. DOI: 10.1016/0016-2361(76)90028-4.
  • Miura, S.; Silveston, P. Change of Pore Properties during Carbonization of Coking Coal. Carbon 1980, 18, 93–108. DOI: 10.1016/0008-6223(80)90017-2.
  • Kasaoka, S.; Sakata, Y.; Shimada, M. Effects of Coal Carbonization Conditions on Rate of Steam Gasification of Char. Fuel 1987, 66, 697–701. DOI: 10.1016/0016-2361(87)90282-1.
  • Duffy, J. J.; Castro Díaz, M.; Snape, C. E.; Steel, K. M.; Mahoney, M. R. Understanding the Mechanisms behind Coking Pressure: Relationship to Pore Structure. Fuel 2007, 86, 2167–2178. DOI: 10.1016/j.fuel.2007.03.040.
  • Uchida, K.; Kudo, S.; Mori, A.; Ashik, U.; Norinaga, K.; Dohi, Y.; Uebo, K.; Hayashi, J. I. Production of High-Strength Cokes from Non-and Slightly Caking Coals. Part II: Application of Sequence of Fine Pulverization of Coal, Briquetting and Carbonization to Single Coals and Binary Blends. ISIJ Int. 2019, 59, 1449–1456. DOI: 10.2355/isijinternational.ISIJINT-2018-847.
  • Xie, F.; Li, Z. H.; Wang, W. J.; Li, D. F.; Li, Z. Z.; Lv, B. L.; Hou, B. In-Situ SAXS Study of Pore Structure during Carbonization of Non-Caking Coal Briquettes. Fuel 2020, 262, 116547. DOI: 10.1016/j.fuel.2019.116547.
  • Lv, Q.; Li, Z. H.; Liu, L. Z.; Zhao, Y. X.; Li, D. F.; Guo, W. Y.; Mo, G.; Lv, B. L. In Situ SAXS Study of Fractal Structure of Non-Caking Coal during Carbonisation. Philos. Mag. Lett. 2020. DOI: 10.1080/09500839.2020.1845912.
  • Li, M. F.; Zeng, F. G.; Chang, H. Z.; Xu, B. S.; Wang, W. Aggregate Structure Evolution of Low-Rank Coals during Pyrolysis by in-Situ X-Ray Diffraction. Int. J. Coal Geol. 2013, 116-117, 262–269. DOI: 10.1016/j.coal.2013.07.008.
  • Wu, D.; Liu, G. J.; Sun, R. Y.; Fan, X. Investigation of Structural Characteristics of Thermally Metamorphosed Coal by FTIR Spectroscopy and X-Ray Diffraction. Energy Fuels 2013, 27, 5823–5830.
  • Takagi, H.; Maruyama, K.; Yoshizawa, N.; Yamada, Y.; Sato, Y. XRD Analysis of Carbon Stacking Structure in Coal during Heat Treatment. Fuel 2004, 83, 2427–2433. DOI: 10.1016/j.fuel.2004.06.019.
  • Zhang, W. Y.; Chen, S. C.; Han, F.; Wu, D. An Experimental Study on the Evolution of Aggregate Structure in Coals of Different Ranks by in Situ X-Ray Diffractometry. Anal. Methods 2015, 7, 8720–8726. DOI: 10.1039/C5AY01922B.
  • Wu, D.; Zhang, W. Y.; Krafft, C. Evolution Mechanism of Macromolecular Structure in Coal during Heat Treatment: Based on FTIR and XRD in Situ Analysis Techniques. J. Spectro. 2019, 2019, 1–18. DOI: 10.1155/2019/5037836.
  • Xie, F.; Li, D. F.; Li, Z. Z.; Li*, Z. H. A High Temperature Furnace for in-Situ SAXS Measurement of Coal Carbonization. Int. J. Oil Gas Coal Technol. 2020, 23, 365–374. DOI: 10.1504/IJOGCT.2020.105775.
  • Li, Z. H.; Wu, Z. H.; Mo, G.; Xing, X. Q.; Liu, P. A Small Angle X-Ray Scattering Station at Beijing Synchrotron Radiation Facility. Instrum. Sci. Technol. 2014, 42, 128–141. DOI: 10.1080/10739149.2013.845845.
  • Allen, A. J.; Zhang, F.; Kline, R. J.; Guthrie, W. F.; Ilavsky, J. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering . J. Appl. Crystallogr. 2017, 50, 462–474. DOI: 10.1107/S1600576717001972.
  • Xie, F.; Li, Z. H.; Li, Z. Z.; Li, D. F.; Gao, Y. X.; Wang, B. Absolute Intensity Calibration and Application at BSRF SAXS Station. Nucl. Instrum. Methods Phys. Res, Sect. A 2018, 900, 64–68. DOI: 10.1016/j.nima.2018.05.026.
  • Mitropoulos, A. C.; Stefanopoulos, K. L.; Kanellopoulo, N. K. Coal Studies by Small Angle X-Ray Scattering. Microporous Mesoporous Mater. 1998, 24, 29–39. DOI: 10.1016/S1387-1811(98)00143-7.
  • Okolo, G. N.; Everson, R. C.; Neomagus, H. W. J. P.; Roberts, M. J.; Sakurovs, R. Comparing the Porosity and Surface Areas of Coal as Measured by Gas Adsorption, Mercury Intrusion and SAXS Techniques. Fuel 2015, 141, 293–304. DOI: 10.1016/j.fuel.2014.10.046.
  • Wochowicz, A.; Rabiej, S. Determination of Micropore Concentration and Size Distribution in Carbon Fibres by the SAXS Method, Die. Angew. Makromol. Chem. 1991, 190, 187–200. DOI: 10.1002/apmc.1991.051900113.
  • Koberstein, J.; Morra, B.; Stein, R. The Determination of Diffuse-Boundary Thicknesses of Polymers by Small-Angle X-Ray Scattering. J. Appl. Crystallogr. 1980, 13, 34–45. DOI: 10.1107/S0021889880011478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.