131
Views
0
CrossRef citations to date
0
Altmetric
Sensors

Temperature-compensated DC magnetic field sensor based upon a microcapillary resonator

, , , , , & show all

References

  • Yu, C. Q.; Niu, R.; Peng, Z. D.; Li, H.; Luo, Y. M.; Zhou, T. J.; Dong, C. H. A Current Sensor Based on Capillary Microresonator Filled with Terfenol-D Nanoparticles. IEEE Photon. Technol. Lett. 2021, 33, 239–242. DOI: 10.1109/LPT.2021.3054629.
  • Yu, Z.; Jiang, J. F.; Zhang, X. Z.; Liu, K.; Wang, S.; Chen, W. J.; Liu, T. G. Fiber Optic Magnetic Field Sensor Based on Magnetic Nanoparticle Assembly in Microcapillary Ring Resonator. IEEE Photon. J. 2017, 9, 1–9. DOI: 10.1109/JPHOT.2017.2756822.
  • Zhang, Y. N.; Zhu, N. S.; Gao, P.; Zhao, Y. Magnetic Field Sensor Based on Ring WGM Resonator Infiltrated with Magnetic Fluid. J. Magn. Magn. Mater. 2020, 493, 165701. DOI: 10.1016/j.jmmm.2019.165701.
  • Sun, B.; Wang, X. J.; Ma, X. B.; Sun, Z. Y.; Wang, Z. Q.; Zhang, Z. X.; Zhou, K. M. Magnetic-Based Polydimethylsiloxane Microspheres for Magnetic Field Measurement. IEEE Trans. Instrum. Meas. 2022, 71, 1–7. DOI: 10.1109/TIM.2022.3181928.
  • Forstner, S.; Sheridan, E.; Knittel, J.; Humphreys, C. L.; Brawley, G. A.; Rubinsztein-Dunlop, H.; Bowen, W. P. Ultrasensitive Optomechanical Magnetometry. Adv. Mater. 2014, 26, 6348–6353. DOI: 10.1002/adma.201401144.
  • Li, B. B.; Brawley, G.; Greenall, H.; Forstner, S.; Sheridan, E.; Rubinsztein-Dunlop, H.; Bowen, W. P. Ultrabroadband and Sensitive Cavity Optomechanical Magnetometry. Photon. Res. 2020, 8, 1064–1071. DOI: 10.1364/PRJ.390261.
  • Yu, C. Q.; Janousek, J.; Sheridan, E.; Mcauslan, D. L.; Rubinsztein-Dunlop, H.; Lam, P. K.; Zhang, Y. D.; Bowen, W. P. Optomechanical Magnetometry with a Macroscopic Resonator. Phys. Rev. Appl. 2016, 5, 044007. DOI: 10.1103/PhysRevApplied.5.044007.
  • Li, B. B.; Wang, Q. Y.; Xiao, Y. F.; Jiang, X. F.; Li, Y.; Xiao, L. X.; Gong, Q. H. On Chip, High-Sensitivity Thermal Sensor Based on high-Q Polydimethylsiloxane-Coated Microresonator. Appl. Phys. Lett. 2010, 96, 251109. DOI: 10.1063/1.3457444.
  • Strekalov, D. V.; Thompson, R. J.; Baumgartel, L. M.; Grudinin, I. S.; Yu, N. Temperature Measurement and Stabilization in a Birefringent Whispering Gallery Mode Resonator. Opt. Express 2011, 19, 14495–14501. DOI: 10.1364/OE.19.014495.
  • Ward, J. M.; Yang, Y.; Chormaic, S. N. Highly Sensitive Temperature Measurements with Liquid-Core Microbubble Resonators. IEEE Photon. Technol. Lett. 2013, 25, 2350–2353. DOI: 10.1109/LPT.2013.2283732.
  • Munoz-Hernandez, T.; Reyes-Vera, E.; Torres, P. Temperature Sensor Based on Whispering Gallery Modes of Metal-Filled Side-Hole Photonic Crystal Fiber Resonators. IEEE Sens. J. 2020, 20, 9170–9178. DOI: 10.1109/JSEN.2020.2987175.
  • Khozeymeh, F.; Razaghi, M. Crystalline MgF2 Whispering Gallery Mode Resonators as Optical Refractometric Sensors with Ultra-High Improved Sensitivity. IEEE Sens. J. 2020, 20, 2416–2423. DOI: 10.1109/JSEN.2019.2954383.
  • Hanumegowda, N. M.; Stica, C. J.; Patel, B. C.; White, I.; Fan, X. D. Refractometric Sensors Based on Microsphere Resonators. Appl. Phys. Lett. 2005, 87, 201107. DOI: 10.1063/1.2132076.
  • Ren, L. Q.; Zhang, X. W.; Guo, X. X.; Wang, H. T.; Wu, X. High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser. IEEE Photon. Technol. Lett. 2017, 29, 639–642. DOI: 10.1109/LPT.2017.2647959.
  • Liu, G. G.; Li, K. W.; Hao, P.; Zhou, W. C.; Wu, Y. H.; Xuan, M. Bent Optical Fiber Taper for Refractive Index Detection with a High Sensitivity. Sens. Actuat. a-Phys. 2013, 201, 352–356. DOI: 10.1016/j.sna.2013.07.041.
  • Manchee, C. P. K.; Zamora, V.; Silverstone, J. W.; Veinot, J. G. C.; Meldrum, A. Refractometric Sensing with Fluorescent-Core Microcapillaries. Opt. Express 2011, 19, 21540–21551. DOI: 10.1364/OE.19.021540.
  • Wan, L.; Chandrahalim, H.; Zhou, J.; Li, Z. H.; Chen, C.; Cho, S. H.; Zhang, H.; Mei, T.; Tian, H. P.; Oki, Y.; et al. Demonstration of Versatile Whispering-Gallery Micro-Lasers for Remote Refractive Index Sensing. Opt. Express 2018, 26, 5800–5809. DOI: 10.1364/OE.26.005800.
  • Zhang, C. C.; Pu, S. L.; Hao, Z. J.; Wang, B. Y.; Yuan, M.; Zhang, Y. X. Magnetic Field Sensing Based on Whispering Gallery Mode with Nanostructured Magnetic Fluid-Infiltrated Photonic Crystal Fiber. Nanomaterials 2021, 12, 1–10. DOI: 10.3390/nano12050862.
  • Hao, Z. J.; Li, Y. X.; Pu, S. L.; Wang, J.; Chen, F.; Lahoubi, M. Ultrahigh-Performance Vector Magnetic Field Sensor with Wedge-Shaped Fiber Tip Based on Surface Plasmon Resonance and Magnetic Fluid. Nanophotonics 2022, 11, 3519–3528. DOI: 10.1515/nanoph-2022-0224.
  • Wang, H. T.; Pu, S. L.; Wang, N.; Dong, S. H.; Huang, J. Magnetic Field Sensing Based on Singlemode-Multimode-Singlemode Fiber Structures Using Magnetic Fluids as Cladding. Opt. Lett. 2013, 38, 3765–3768. DOI: 10.1364/OL.38.003765.
  • Wang, J.; Pu, S. L.; Hao, Z. J.; Zhang, C. C.; Liu, W. A.; Fan, Y. Y. Comparative Study of Lab-on-Fiber Vector Magnetic Field Sensor Based on Multimode and Few-Mode Fiber. Measurement 2023, 207, 112441. DOI: 10.1016/j.measurement.2023.112441.
  • Dong, S. H.; Pu, S. L.; Wang, H. T. Magnetic Field Sensing Based on Magnetic-Fluid-Clad Fiber-Optic Structure with Taper-like and Lateral-Offset Fusion Splicing. Opt. Express 2014, 22, 19108–19116. DOI: 10.1364/OE.22.019108.
  • Zhang, Y. X.; Pu, S. L.; Li, Y. X.; Hao, Z. J.; Li, D. H.; Yan, S. K.; Yuan, M.; Zhang, C. C. Magnetic Field and Temperature Dual-Parameter Sensor Based on Nonadiabatic Tapered Microfiber Cascaded with FBG. IEEE Access 2022, 10, 15478–15486. DOI: 10.1109/ACCESS.2022.3148211.
  • Zhao, Y.; Wang, X. X.; Lv, R. Q.; Zheng, H. K.; Zhou, Y. F.; Chen, M. Q. Reflective Highly Sensitive Fabry-Perot Magnetic Field Sensor Based on Magneto-Volume Effect of Magnetic Fluid. IEEE Trans. Instrum. Meas. 2021, 70, 1–6. DOI: 10.1109/TIM.2021.3067194.
  • Zhao, Y.; Wang, X. X.; Lv, R. Q.; Li, G. L.; Zheng, H. K.; Zhou, Y. F. Highly Sensitive Reflective Fabry-Perot Magnetic Field Sensor Using Magnetic Fluid Based on Vernier Effect. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. DOI: 10.1109/TIM.2020.3017245.
  • Zhao, Y.; Wu, D.; Lv, R. Q.; Li, J. Magnetic Field Measurement Based on the Sagnac Interferometer with a Ferrofluid-Filled High-Birefringence Photonic Crystal Fiber. IEEE Trans. Instrum. Meas 2016, 65, 1503–1507. DOI: 10.1109/TIM.2016.2519767.
  • Zhao, Y.; Lv, R. Q.; Wang, D.; Wang, Q. Fiber Optic Fabry-Perot Magnetic Field Sensor with Temperature Compensation Using a Fiber Bragg Grating. IEEE Trans. Instrum. Meas. 2014, 63, 2210–2214. DOI: 10.1109/TIM.2014.2308360.
  • Zhao, Z. Y.; Tang, M.; Gao, F.; Zhang, P.; Duan, L.; Zhu, B. P.; Fu, S. N.; Ouyang, J.; Wei, H. F.; Li, J. Y.; et al. Temperature Compensated Magnetic Field Sensing Using Dual S-Bend Structured Optical Fiber Modal Interferometer Cascaded with Fiber Bragg Grating. Opt. Express 2014, 22, 27515–27523. DOI: 10.1364/OE.22.027515.
  • Han, J. H.; Hu, H. F.; Wang, H.; Zhang, B. W.; Song, X. W.; Ding, Z. Y.; Zhang, X. Z.; Liu, T. G. Temperature-Compensated Magnetostrictive Current Sensor Based on the Configuration of Dual Fiber Bragg Gratings. J. Lightwave Technol. 2017, 35, 4910–4915. DOI: 10.1109/JLT.2017.2766119.
  • Guo, Y.; Wang, Z. Y.; Qiu, Q.; Su, J.; Wang, Y. X.; Shi, S. J.; Yu, Z. F. Theoretical and Experimental Investigations on the Temperature Dependence of the Refractive Index of Amorphous Silica. J. Non-Cryst. Solids 2015, 429, 198–201. DOI: 10.1016/j.jnoncrysol.2015.09.008.
  • Yu, C. Q.; Zhang, Y. D.; Zhang, X. N.; Wang, K. Y.; Yao, C. B.; Yuan, P.; Guan, Y. D. Nested Fiber Ring Resonator Enhanced Mach-Zehnder Interferometer for Temperature Sensing. Appl. Opt. 2012, 51, 8873–8876. DOI: 10.1364/AO.51.008873.
  • Ren, X. B.; Ren, K.; Ming, C. G. Self-Reference Refractive Index Sensor Based on Independently Controlled Double Resonances in Side-Coupled U-Shaped Resonators. Sensors (Basel) 2018, 18, 1376. DOI: 10.3390/s18051376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.