10
Views
1
CrossRef citations to date
0
Altmetric
Articles

The Progression of Inflammation Parallels the Dermal Angiogenesis in a Keratin 14 IL-4-Transgenic Model of Atopic Dermatitis

, , , , , , & show all
Pages 49-64 | Received 25 Apr 2007, Accepted 25 Apr 2007, Published online: 10 Jul 2009

REFERENCES

  • Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29: 15–18
  • Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 2006; 28: 1779–1802
  • Escudier B, Eisen T, Stadler W M, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai A A, Rolland F, Demkow T, Hutson T E, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski R M. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356: 125–134
  • Motzer R J, Michaelson M D, Redman B G, Hudes G R, Wilding G, Figlin R A, Ginsberg M S, Kim S T, Baum C M, De Primo S E, Li J Z, Bello C L, Theuer C P, George D J, Rini B I. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24: 16–24
  • Feldman D R, Motzer R J. Novel targets and therapies for metastatic renal cell carcinoma. Oncology (Williston Park) 2006; 20: 1745–1753, discussion 1756
  • Bagli E, Xagorari A, Papetropoulos A, Murphy C, Fotsis T. Angiogenesis in inflammation. Autoimmun Rev 2004; 3: S26, (Suppl 1)
  • Brennen W N, Cooper C R, Capitosti S, Brown M L, Sikes R A. Thalidomide and analogues: current proposed mechanisms and therapeutic usage. Clin Prostate Cancer 2004; 3: 54–61
  • Du W, Hattori Y, Hashiguchi A, Kondoh K, Hozumi N, Ikeda Y, Sakamoto M, Hata J, Yamada T. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int 2004; 54: 285–294
  • Gately S, Li W W. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 2004; 31: 2–11
  • Koehne C H, Dubois R N. COX-2 inhibition and colorectal cancer. Semin Oncol 2004; 31: 12–21
  • Streck C J, Zhang Y, Miyamoto R, Zhou J, Ng C Y, Nathwani A C, Davidoff A M. Restriction of neuroblastoma angiogenesis and growth by interferon-alpha/beta. Surgery 2004; 136: 183–189
  • Shishodia S, Aggarwal B B. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-kappaB by suppressing activation of IkappaBalpha kinase in human non-small cell lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res 2004; 64: 5004–5012
  • Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe D D, Shalinsky D R, Thurston G, Yancopoulos G D, McDonald D M. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 2004; 165: 35–52
  • Grosios K, Wood J, Esser R, Raychaudhuri A, Dawson J. Angiogenesis inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm Res 2004; 53: 133–142
  • Leung D Y, Bieber T. Atopic dermatitis. Lancet 2003; 361: 151–160
  • Leung D Y, Boguniewicz M, Howell M D, Nomura I, Hamid Q A. New insights into atopic dermatitis. J Clin Invest 2004; 113: 651–657
  • Agha-Majzoub R, Becker R P, Schraufnagel D E, Chan L S. Angiogenesis: the major abnormality of the keratin-14 IL-4 transgenic mouse model of atopic dermatitis. Microcirculation 2005; 12: 455–476
  • Chan L S, Robinson N, Xu L. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Invest Dermatol 2001; 117: 977–983
  • Chen L, Martinez O, Venkataramani P, Lin S X, Prabhakar B S, Chan L S. Correlation of disease evolution with progressive inflammatory cell activation and migration in the IL-4 transgenic mouse model of atopic dermatitis. Clin Exp Immunol 2005; 139: 189–201
  • Chen L, Lin S X, Overbergh L, Mathieu C, Chan L S. The disease progression in the keratin 14 IL-4-transgenic mouse model of atopic dermatitis parallels the upregulations of B cell activation molecules, proliferation, and surface and serum IgE. Clin Exp Immunol 2005; 142: 21–30
  • Chen L, Martinez O, Overbergh L, Mathieu C, Prabhakar B S, Chan L S. Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin Exp Immunol 2004; 138: 375–387
  • Zhang Y, Matsuo H, Morita E. Increased production of vascular endothelial growth factor in the lesions of atopic dermatitis. Arch Dermatol Res 2006; 297: 425–429
  • Shih S C, Robinson G S, Perruzzi C A, Calvo A, Desai K, Green J E, Ali I U, Smith L E, Senger D R. Molecular profiling of angiogenesis markers. Am J Pathol 2002; 161: 35–41
  • Voros G, Maquoi E, Demeulemeester D, Clerx N, Collen D, Lijnen H R. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 2005; 146: 4545–4554
  • Shih S C, Ju M, Liu N, Smith L E. Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 2003; 112: 50–57
  • Thijssen V L, Brandwijk R J, Dings R P, Griffioen A W. Angiogenesis gene expression profiling in xenograft models to study cellular interactions. Exp Cell Res 2004; 299: 286–293
  • Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 2001; 25: 386–401
  • Hulthen U L, Cao Z, Rumble J R, Cooper M E, Johnston C I. Vascular hypertrophy and albumin permeability in a rat model combining hypertension and diabetes mellitus. Effects of calcium antagonism, angiotensin converting enzyme inhibition, and angiotensin II-AT1-receptor blockade. Am J Hypertens 1996; 9: 895–901
  • Ruhrberg C. Growing and shaping the vascular tree: multiple roles for VEGF. Bioessays 2003; 25: 1052–1060
  • Yancopoulos G D, Davis S, Gale N W, Rudge J S, Wiegand S J, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248
  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–439
  • Lee S S, Joo Y S, Kim W U, Min D J, Min J K, Park S H, Cho C S, Kim H Y. Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 2001; 19: 321–324
  • Harada M, Mitsuyama K, Yoshida H, Sakisaka S, Taniguchi E, Kawaguchi T, Ariyoshi M, Saiki T, Sakamoto M, Nagata K, Sata M, Matsuo K, Tanikawa K. Vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 1998; 27: 377–380
  • Detmar M, Yeo K T, Nagy J A, Van de Water L, Brown L F, Berse B, Elicker B M, Ledbetter S, Dvorak H F. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol 1995; 105: 44–50
  • Trompezinski S, Denis A, Vinche A, Schmitt D, Viac J. IL-4 and interferon-gamma differentially modulate vascular endothelial growth factor release from normal human keratinocytes and fibroblasts. Exp Dermatol 2002; 11: 224–231
  • Chen L, Lin S X, Agha-Majzoub R, Overbergh L, Mathieu C, Chan L S. CCL27 is a critical factor for the development of atopic dermatitis in the keratin-14-IL-4-transgenic mouse model. Int Immunol 2006; 18: 1233–1242
  • Maisonpierre P C, Suri C, Jones P F, Bartunkova S, Wiegand S J, Radziejewski C, Compton D, McClain J, Aldrich T H, Papadopoulos N, Daly T J, Davis S, Sato T N, Yancopoulos G D. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60
  • Guenzi E, Topolt K, Cornali E, Lubeseder-Martellato C, Jorg A, Matzen K, Zietz C, Kremmer E, Nappi F, Schwemmle M, Hohenadl C, Barillari G, Tschachler E, Monini P, Ensoli B, Sturzl M. The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. Embo J 2001; 20: 5568–5577
  • Guenzi E, Topolt K, Lubeseder-Martellato C, Jorg A, Naschberger E, Benelli R, Albini A, Sturzl M. The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. EMBO J 2003; 22: 3772–3782
  • Bhushan M, Young H S, Brenchley P E, Griffiths C E. Recent advances in cutaneous angiogenesis. Br J Dermatol 2002; 147: 418–425
  • Reinders M E, Sho M, Izawa A, Wang P, Mukhopadhyay D, Koss K E, Geehan C S, Luster A D, Sayegh M H, Briscoe D M. Proinflammatory functions of vascular endothelial growth factor in alloimmunity. J Clin Invest 2003; 112: 1655–1665
  • Xia Y P, Li B, Hylton D, Detmar M, Yancopoulos G D, Rudge J S. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 2003; 102: 161–168
  • Nakamura M, Abe Y, Tokunaga T. Pathological significance of vascular endothelial growth factor A isoform expression in human cancer. Pathol Int 2002; 52: 331–339
  • Frank S, Hubner G, Breier G, Longaker M T, Greenhalgh D G, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes: implications for normal and impaired wound healing. J Biol Chem 1995; 270: 12607–12613
  • Ancelin M, Chollet-Martin S, Herve M A, Legrand C, El Benna J, Perrot-Applanat M. Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism. Lab Invest 2004; 84: 502–512
  • Mor F, Quintana F J, Cohen I R. Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 2004; 172: 4618–4623
  • Detmar M, Brown L F, Schon M P, Elicker B M, Velasco P, Richard L, Fukumura D, Monsky W, Claffey K P, Jain R K. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 1998; 111: 1–6
  • Dvorak H F, Brown L F, Detmar M, Dvorak A M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–1039
  • Holash J, Wiegand S J, Yancopoulos G D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999; 18: 5356–5362
  • Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos G D, Isner J M. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 1998; 83: 233–240
  • Papapetropoulos A, Garcia-Cardena G, Dengler T J, Maisonpierre P C, Yancopoulos G D, Sessa W C. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999; 79: 213–223
  • Sato T N, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70–74
  • Teichert-Kuliszewska K, Maisonpierre P C, Jones N, Campbell A I, Master Z, Bendeck M P, Alitalo K, Dumont D J, Yancopoulos G D, Stewart D J. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 2001; 49: 659–670
  • Kim I, Kim J H, Moon S O, Kwak H J, Kim N G, Koh G Y. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 2000; 19: 4549–4552
  • Gale N W, Thurston G, Hackett S F, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte M H, Jackson D, Suri C, Campochiaro P A, Wiegand S J, Yancopoulos G D. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 2002; 3: 411–423
  • Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997; 277: 48–50
  • Thurston G. Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J Anat 2002; 200: 575–580
  • Bach T L, Barsigian C, Chalupowicz D G, Busler D, Yaen C H, Grant D S, Martinez J. VE-Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 1998; 238: 324–334
  • Gory-Faure S, Prandini M H, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M, Huber P. Role of vascular endothelial-cadherin in vascular morphogenesis. Development 1999; 126: 2093–2102
  • Zanetti A, Lampugnani M G, Balconi G, Breviario F, Corada M, Lanfrancone L, Dejana E. Vascular endothelial growth factor induces SHC association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling. Arterioscler Thromb Vasc Biol 2002; 22: 617–622
  • Esser S, Lampugnani M G, Corada M, Dejana E, Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 1998; 111: 1853–1865, (Pt 13)
  • Naschberger E, Bauer M, Sturzl M. Human guanylate binding protein-1 (hGBP-1) characterizes and establishes a non-angiogenic endothelial cell activation phenotype in inflammatory diseases. Adv Enzyme Regul 2005; 45: 215–227
  • Lubeseder-Martellato C, Guenzi E, Jorg A, Topolt K, Naschberger E, Kremmer E, Zietz C, Tschachler E, Hutzler P, Schwemmle M, Matzen K, Grimm T, Ensoli B, Sturzl M. Guanylate-binding protein-1 expression is selectively induced by inflammatory cytokines and is an activation marker of endothelial cells during inflammatory diseases. Am J Pathol 2002; 161: 1749–1759
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.