12
Views
1
CrossRef citations to date
0
Altmetric
Articles

Age-Related Alterations in Reactivity of Cerebral Arterioles: Role of Oxidative Stress

, , &
Pages 225-236 | Received 10 Apr 2007, Accepted 21 Aug 2007, Published online: 10 Jul 2009

REFERENCES

  • Hajdu M A, Siems J E, Baumbach G L. Effects of aging on mechanics and composition of cerebral arterioles in rats. Circ Res 1990; 66: 1747–1754
  • Sullivan J C, Loomis E D, Collins M, Imig J D, Inscho E W, Pollock J S. Age-related alterations in NOS and oxidative stress in mesenteric arteries from male and female rats. J Appl Physiol 2004; 97: 1268–1274
  • Mayhan W G, Arrick D M, Sharpe G M, Patel K P, Sun H. Inhibition of NAD(P)H oxidase alleviates impaired NOS-dependent responses of pial arterioles in Type 1 diabetes mellitus. Microcirculation 2006; 13: 567–575
  • Csiszar A, Ungvari Z, Edwards J G, Kaminski P, Wolin M S, Koller A, Kaley G. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 2002; 90: 1159–1166
  • Hamilton C A, Brosnan M J, McIntyre M, Graham D, Dominiczak A F. Superoxide excess in hypertension and aging. A common cause of endothelial dysfunction. Hypertension 2001; 37: 529–534
  • Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, Salvetti A. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001; 38: 274–279
  • Mayhan W G, Faraci F M, Baumbach G L, Heistad D D. Effects of aging on responses of cerebral arterioles. Am J Physiol 1990; 258: H1138–H1143
  • Cai H, Harrison D G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87: 840–844
  • Brandes R P, Fleming I, Busse R. Endothelial aging. Cardiovasc Res 2005; 66: 286–294
  • Linford N J, Schriner S E, Rabinovitch P S. Oxidative damage and aging: spotlight on mitochondria. Cancer Res 2006; 66: 2497–2499
  • Gryglewski R J, Palmer R MJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–456
  • Beckman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996; 271: C1424–C1437
  • Mansouri A, Muller F L, Liu Y, Ng R, Faulkner J, Hamilton M, Richardson A, Huang T T, Epstein C J, Van Remmen H. Alterations in mitochondrial function, hydrogen peroxide release, and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 2006; 127: 298–306
  • Pacher P, Mabley J G, Garcia Soriano F, Liaudet L, Komjati K, Szabo C. Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. Br J Pharmac 2002; 135: 1347–1350
  • Siqueira I R, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto C A. Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 2005; 23: 663–671
  • Mayhan W G, Heistad D D. Permeability of blood-brain barrier to various sized molecules. Am J Physiol 1985; 248: H712–H718
  • Mayhan W G. Impairment of endothelium-dependent dilatation of the basilar artery during diabetes mellitus. Brain Res 1992; 580: 297–302
  • Mayhan W G. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Physiol 1989; 256: H621–H625
  • Phillips S A, Sylvester F A, Frisbee J C. Oxidant stress and constrictor reactivity impair cerebral artery dilation in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R522–R530
  • Zhu J, Mori T, Huang T, Lombard J H. Effect of high-salt diet on NO release and superoxide production in rat aorta. Am J Physiol Heart Circ Physiol 2004; 286: H575–H583
  • Phillips S A, Drenjancevic-Peric I, Frisbee J C, Lombard J H. Chronic AT(1) receptor blockade alters mechanisms mediating responses to hypoxia in rat skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 2004; 287: H545–H552
  • Sun H, Zheng H, Molacek E, Fang Q, Patel K P, Mayhan W G. Role of NAD(P)H oxidase in alcohol-induced impairment of endothelial nitric oxide synthase-dependent dilation of cerebral arterioles. Stroke 2006; 37: 495–500
  • Didion S P, Faraci F M. Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. Am J Physiol 2002; 282: H688–H695
  • Mayhan W G, Sun H, Mayhan J F, Patel K P. Influence of exercise on dilatation of the basilar artery during diabetes mellitus. J Appl Physiol 2004; 96: 1730–1737
  • Trauernicht A K, Sun H, Patel K P, Mayhan W G. Enalapril prevents impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in diabetic rats. Stroke 2003; 34: 2698–2703
  • Fang Q, Sun H, Arrick D M, Mayhan W G. Inhibition of NADPH oxidase improves impaired reactivity of pial arterioles during chronic exposure to nicotine. J Appl Physiol 2006; 100: 631–636
  • Arrick D M, Sharpe G M, Sun H, Mayhan W G. Diabetes-induced cerebrovascular dysfunction: role of poly(ADP-ribose) polymerase. Microvasc Res 2007; 73: 1–6
  • Mayhan W G. Endothelium-dependent responses of cerebral arterioles to adenosine 5′-diphosphate. J Vasc Res 1992; 29: 353–358
  • Ayajiki K, Okamura T, Toda N. Involvement of nitric oxide in endothelium-dependent, phasic relaxation caused by histamine in monkey cerebral arteries. Jpn J Pharmacol 1992; 60: 357–362
  • Faraci F M. Role of endothelium-derived relaxing factor in cerebral circulation: large arteries versus microcirculation. Am J Physiol 1991; 261: H1038–H1042
  • Didion S P, Ryan M J, Didion L A, Fegan P E, Sigmund C D, Faraci F M. Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 2002; 91: 938–944
  • Kim D E, Suh Y S, Lee M S, Kim K Y, Lee J H, Lee H S, Hong K W, Kim C D. Vascular NAD(P)H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke 2002; 33: 2687–2691
  • Beswick R A, Dorrance A M, Leite R, Webb R C. NADH-NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 2001; 38: 1107–1111
  • Hamilton C A, Brosnan M J, Al-Benna S, Berg G, Dominiczak A F. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. Hypertension 2002; 40: 755–762
  • Rey F E, Li X C, Carretero O A, Garvin J L, Pagano P J. Perivascular superoxide anion contributes to impairment of endothelium-dependent relaxation: role of gp91(phox). Circulation 2002; 106: 2497–2502
  • Ungvari Z, Csiszar A, Huang A, Kaminski P M, Wolin M S, Koller A. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation 2003; 108: 1253–1258
  • Park L, Anrather J, Girouard H, Zhou P, Iadecola C. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 2007, (in press)
  • Semsei I, Rao G, Richardson A. Expression of superoxide dismutase and catalase in rat brain as a function of age. Mech Ageing Dev 1991; 58: 13–19
  • Geremia E, Baratta D, Zafarana S, Giordano R, Pinizzotto M R, La Rosa M G, Garozzo A. Antioxidant enzymatic systems in neuronal and glial cell-enriched fractions of rat brain during aging. Neurochem Res 1990; 15: 719–723
  • Chabrashvili T, Tojo A, Onosato M L, Kitiyakara C, Quinn M T, Fujita T, Welch W J, Wilcox C S. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 2002; 39: 269–274
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2001; 82: 47–95
  • Griendling K K, Minieri C A, Ollerenshaw J D, Alexander R W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148
  • Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant S L, Lambeth J D, Griendling K K. Novel gp91(phox) homologues in vascular smooth muscle cells: NOX1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001; 88: 888–894
  • Suh Y A, Arnold R S, Lassegue B, Shi J, Xu X, Sorescu D, Chung A B, Griendling K K, Lambeth J D. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401: 79–82
  • Mohazzab K M, Kaminski P M, Wolin M S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994; 266: H2568–2572
  • De Keulenaer G W, Chappell D C, Ishizaka N, Nerem R M, Alexander R W, Griendling K K. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide producing NADH oxidase. Circ Res 1998; 82: 1094–1101
  • Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M. NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 2005; 36: 1040–1046
  • Alonso-Galicia M, Brands M W, Zappe D H, Hall J E. Hypertension in obese Zucker rats. Role of angiotensin II and adrenergic activity. Hypertension 1996; 28: 1047–1054
  • Alexander J S, Elrod J W. Extracellular matrix, junctional integrity, and matrix metalloproteinase interactions in endothelial permeability regulation. J Anat 2002; 200: 561–574
  • Burkey J L, Campanale K M, O'Bannon D D, Cramer J W, Farid N A. Disposition of LY333531, a selective protein kinase C beta inhibitor, in the Fischer 344 rat and beagle dog. Xenobiotica 2002; 32: 1045–1052
  • Paravicini T M, Chrissobolis S, Drummond G R, Sobey C G. Increased NADPH-oxidase activity and NOX4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPHin vivo. Stroke 2004; 35: 584–589
  • Griendling K K, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase. Role in cardiovascular biology and disease. Circ Res 2000; 86: 494–501
  • Fukui T, Ishizaka N, Rajagopalan S, Laursen J B, Capers Q, Taylor W R, Harrison D G, de Leon H, Wilcox J N, Griendling K K. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997; 80: 45–51
  • Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland S M, Harrison D G. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002; 40: 511–515
  • Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman B A, Griendling K K, Harrison D G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations in vascular tone. J Clin Invest 1996; 97: 1916–1923
  • Goto K, Fujii K, Onaka U, Abe I, Fujishima M. Angiotensin-converting enzyme inhibitor prevents age-related endothelial dysfunction. Hypertension 2000; 36: 581–587
  • Mukai Y, Shimokawa H, Higashi M, Morikawa K, Matoba T, Hiroki J, Kunihiro I, Talukder H M, Takeshita A. Inhibition of renin-angiotensin system ameliorates endothelial dysfunction associated with aging in rats. Arterioscler Thromb Vasc Biol 2002; 22: 1445–1450

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.