13
Views
1
CrossRef citations to date
0
Altmetric
Original

The Cochlear Pericytes

, , , , , , & show all
Pages 515-529 | Received 17 Jan 2008, Accepted 11 Mar 2008, Published online: 10 Jul 2009

REFERENCES

  • Ando M, Kakigi A, Takeuchi K. Elongated pericyte-like cells connect discrete capillaries in the cochlear stria vascularis of gerbils and rat. Cell Tissue Res 1999; 296: 673–676
  • Ando M, Takeuchi S. Postnatal vascular development in the lateral wall of the cochlear duct of gerbils: quantitative analysis by electron microscopy and confocal laser microscopy. Hear Res 1998; 123(1–2)148–156
  • Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 2005; 97: 512–523
  • Axelsson A. The vascular anatomy of the cochlea in the guinea pig and in man. Acta Otolaryngol (Stockh) 1968, Suppl:243:3+
  • Axelsson A, Vertes D. Vascular histology of the guinea pig cochlea. Acta Otolaryngol (Stockh) 1978; 85: 198–212
  • Bar H, Mucke N, Ringler P, Muller S A, Kreplak L, Katus H A, Aebi U, Herrmann H. Impact of disease mutations on the desmin filament assembly process. J Mol Biol 2006; 360: 1031–1042
  • Benjamin L, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998; 125: 1591–1598
  • Brechtelsbauer P B, Ren T-Y, Miller J M, Nuttall A L. Autoregulation of cochlear blood flow in the hydropic guinea pig. Hearing Res 1995; 89: 130–136
  • Brown J N, Nuttall A L. Autoregulation of cochlear blood flow in guinea pigs. Am J Physiol 1994; 266: H458–H467
  • de Witt C, Hoepfl B, Wolfle S E. Endothelial mediators and communication through vascular gap junctions. Biol Chem 2006; 387: 3–9
  • Diazflores L, Gutierrez R, Varela H, Rancel N, Valladares F. Microvascular pericytes: a review of their morphological and functional-characteristics. Histol Histopathol 1991; 6: 269–286
  • Donoghue L, Tyburski J G, Steffes C P, Wilson R F. Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes. Am J Surg 2006; 191: 349–352
  • Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006; 26: 613–624
  • Edelman D A, Jiang Y, Tyburski J, Wilson R F, Steffes C. Pericytes and their role in microvasculature homeostasis. J Surg Res 2006; 135: 305–311
  • Figueroa X F, Alvina K, Martinez A D, Garces G, Rosemblatt M, Boric M P, Saez J C. Histamine reduces gap junctional communication of human tonsil high endothelial cells in culture. Microvasc Res 2004; 68: 247–257
  • Frank R, Dutta S, Mancini M. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci 1987; 28: 1086–1091
  • Franz P, Helmreich M, Stach M, Franz-Italon C, Bock P. Distribution of actin and myosin in the cochlear microvascular bed. Acta Oto-Laryngol 2004; 124: 481–485
  • Fujimoto K. Pericyte-endothelial gap junctions in developing rat cerebral capillaries: a fine structural study. Anat Rec 1995; 242: 562–565
  • Gerhardt H, Christer B. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314: 15–23
  • Goldfarb L G, Vicart P, Goebel H H, Dalakas M C. Desmin myopathy. Brain 2004; 127: 723–734
  • Hill J K, Gillespie P G. Differential regulation of pH in the soma and bundle of hair cells. Biophys J 2002; 82: 567A
  • Hirschi K K, D'Amore P A. Pericytes in the microvasculature. Cardiovasc Res 1996; 32: 687–698
  • Inai T, Mancuso M R, McDonald D M, Kobayashi J, Nakamura K, Shibata Y. Shear-stress-induced upregulation of connexin 43 expression in endothelial cells on upstream surfaces of rat cardiac valves. Histochem Cell Biol 2004; 122: 477–483
  • Kuwabara T, Cogan D. Studies of retinal vascular patterns. Arch Ophthalmol 1960; 64: 904–911
  • Lai C H, Kuo K H. The critical component to establish in vitro BBB model: pericyte. Brain Res Mol Brain Res 2005; 50: 258–265
  • Li A F, Sato T, Haimovici R, Okamoto T, Roy S. High glucose alters connexin 43 expression and gap junction intercellular communication activity in retinal pericytes. Invest Ophthalmol Vis Sci 2003; 44: 5376–5382
  • Lindahl P, Johansson B R, Leveen P, Betsholtz C. Pericyte Loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997; 277: 242–245
  • Mazurek B, Haupt H, Georgiewa P, Klapp B F, Reisshauer A. A model of peripherally developing hearing loss and tinnitus based on the role of hypoxia and ischemia. Med Hypoth 2006; 67: 892–899
  • Miller J M, Ren T Y, Nuttall A L. Studies of inner ear blood flow in animals and human beings. Otolaryngol Head Neck Surg 1995; 112: 101–113
  • Nakagawa S, Deli M A, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 2007; 27: 687–694
  • Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu X, Nuttall A L. Disorders of cochlear blood flow. Brain Res Rev 2003; 43: 17–28
  • Nehls V, Drenchhahn D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle?. Histochem Cell Biol 1993; 99: 1–12
  • Peppiatt C M, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006; 443: 700–704; Epub, 2006 Oct 2001
  • Puro D G. Physiology and pathobiology of the pericyte-containing retinal microvascular: new developments. Microcirculation 2007; 14: 1–10
  • Quignard J F, Harley E A, Duhault J, Vanhoutte P M, Feltou M. K+ channels in cultured bovine retinal pericytes: effects of beta-adrenergic stimulation. J Cardiovasc Pharmacol 2003; 42: 379–388
  • Rucker H K, Wynder H J, Thomas W E. Cellular mechanisms of CNS pericytes. Brain Res Bull 2000; 51: 363–369
  • Sakagami K, Wu D M, Puro D G. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J Physiol (Lond) 1999; 521: 637–650
  • Shah S B, Davis J, Weisleder N, Kostavassili I, McCulloch A D, Ralston E, Capetanaki Y, Lieber R L. Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 2004; 86: 2993–3008
  • Shepro D, Morel N M. Pericyte physiology. FASEB 1993; 7: 1031–1038
  • Shi X R, Ren T Y, Nuttall A L. Nitric oxide distribution and production in the guinea pig cochlea. Hear Res 2001; 153: 23–31
  • Simard M, Arcuino G, Takano T, Liu Q S, Nedergaard M. Signaling at the gliovascular interface. J Neurosci 2003; 23: 9254–9262
  • Sims D E. Diversity within pericytes. Clin Exper Pharmacol Physiol 2000; 27: 842–846
  • Stewart M. Intermediate filament structure and assembly. Curr Opin Cell Biol 1993; 5: 3–11
  • Takeuchi S, Ando M. Dye-coupling of melanocytes with endothelial cells and pericytes in the cochlea of gerbils. Cell Tissue Res 1998; 293: 271–275
  • Thomas W E. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res 1999; 31: 42–57
  • Wangemann P. Cochlear blood flow regulation. Adv Otorhinolaryngol 2002; 59: 51–57
  • Zhang Q, Cao C, Mangano M, Zhang Z, Silldorff E P, Lee-Kwon W, Payne K, Pallone T L. Descending vasa recta endothelium is an electrical syncytium. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1688–R1699

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.