757
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

The feasibility of an acute high-intensity exercise bout to promote locomotor learning after stroke

ORCID Icon, , , &
Pages 83-89 | Received 17 Jul 2017, Accepted 27 Oct 2017, Published online: 05 Nov 2017

References

  • Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. The Lancet. 2011;377(9778):1693–1702.10.1016/S0140-6736(11)60325-5
  • van Kordelaar J, van Wegen E, Kwakkel G. Impact of time on quality of motor control of the paretic upper limb after stroke. Arch Phys Med Rehabil. 2014;95(2):338–344.10.1016/j.apmr.2013.10.006
  • Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23(8):1084–1089.10.1161/01.STR.23.8.1084
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–239.10.1044/1092-4388(2008/018)
  • Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80(6):3321–3325.
  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794.10.1126/science.272.5269.1791
  • Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–2149.
  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–1216.10.1161/01.STR.31.6.1210
  • Savin DN, Tseng SC, Whitall J, Morton SM. Poststroke hemiparesis impairs the rate but not magnitude of adaptation of spatial and temporal locomotor features. Neurorehabil Neural Repair. 2013;27(1):24–34.10.1177/1545968311434552
  • Tyrell CM, Helm E, Reisman DS. Learning the spatial features of a locomotor task is slowed after stroke. J Neurophysiol. 2014;112(2):480–489.10.1152/jn.00486.2013
  • Malone LA, Bastian AJ. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke. Neurorehabil Neural Repair. 2014;28(3):230–240.10.1177/1545968313505912
  • Mang CS, Campbell KL, Ross CJ, Boyd LA. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther. 2013;93(12):1707–1716.10.2522/ptj.20130053
  • Winter B, Breitenstein C, Mooren FC, et al. High impact running improves learning. Neurobiol Learn Mem. 2007;87(4):597–609.10.1016/j.nlm.2006.11.003
  • Roig M, Skriver K, Lundbye-Jensen J, Kiens B, Nielsen JB. A single bout of exercise improves motor memory. PLoS One. 2012;7(9):e44594.10.1371/journal.pone.0044594
  • Skriver K, Roig M, Lundbye-Jensen J, et al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem. 2014;116:46–58.10.1016/j.nlm.2014.08.004
  • Thomas R, Beck MM, Lind RR, et al. Acute exercise and motor memory consolidation: the role of exercise timing. Neural Plast. 2016;2016:6205452.
  • Thomas R, Flindtgaard M, Skriver K, et al. Acute exercise and motor memory consolidation: does exercise type play a role? Scandinavian journal of medicine & science in sports. 2017;27(11):1523–1532.
  • Thomas R, Johnsen LK, Geertsen SS, et al. Acute exercise and motor memory consolidation: the role of exercise intensity. PLoS One. 2016;11(7):e0159589.10.1371/journal.pone.0159589
  • Mang CS, Snow NJ, Wadden KP, Campbell KL, Boyd LA. High-intensity aerobic exercise enhances motor memory retrieval. Med Sci Sports Exerc. 2016;48(12):2477–2486.10.1249/MSS.0000000000001040
  • Snow NJ, Mang CS, Roig M, McDonnell MN, Campbell KL, Boyd LA. The effect of an acute bout of moderate-intensity aerobic exercise on motor learning of a continuous tracking task. PLoS One. 2016;11(2):e0150039.10.1371/journal.pone.0150039
  • Bekinschtein P, Cammarota M, Izquierdo I, Medina JH. Reviews: BDNF and Memory formation and storage. The Neuroscientist. 2008;14(2):147–156.10.1177/1073858407305850
  • Gibon J, Barker PA. Neurotrophins and proneurotrophins. The Neuroscientist. 2017;1073858417697037.
  • Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–1495.10.1161/STROKEAHA.108.531806
  • Rasmussen P, Brassard P, Adser H, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062–1069.10.1113/expphysiol.2009.048512
  • Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Med. 2010;40(9):765–801.10.2165/11534530-000000000-00000
  • Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64.10.1016/j.jpsychires.2014.10.003
  • Santos GL, Alcântara CC, Silva-Couto MA, García-Salazar LF, Russo TL. Decreased Brain-Derived Neurotrophic Factor Serum Concentrations in Chronic Post-Stroke Subjects. J Stroke Cerebrovasc Dis. 2016;25(12):2968–2974.10.1016/j.jstrokecerebrovasdis.2016.08.014
  • Roig M, Thomas R, Mang CS, et al. Time-Dependent Effects of Cardiovascular Exercise on Memory. Exerc Sport Sci Rev. 2016;44(2):81–88.10.1249/JES.0000000000000078
  • Stoykov ME, Madhavan S. Motor priming in neurorehabilitation. J Neurol Phys Ther. 2015;39(1):33–42.10.1097/NPT.0000000000000065
  • Stoykov ME, Corcos DM, Madhavan S. Movement-based priming: clinical applications and neural mechanisms. J Motor Behav. 2017;49(1):88–97.10.1080/00222895.2016.1250716
  • Boyne P, Dunning K, Carl D, Gerson M, Khoury J, Kissela B. Within-session responses to high-intensity interval training in chronic stroke. Med Sci Sports Exerc. 2015;47(3):476–484.10.1249/MSS.0000000000000427
  • Carl DL, Boyne P, Rockwell B, et al. Preliminary safety analysis of high-intensity interval training (HIIT) in persons with chronic stroke. Appl Physiol Nutr Metab. 2017;42(3):311–318.10.1139/apnm-2016-0369
  • Lang CE, MacDonald JR, Reisman DS, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–1698.10.1016/j.apmr.2009.04.005
  • Helm EE, Matt KS, Kirschner KF, Pohlig RT, Kohl D, Reisman DS. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol Learn Mem. 2017;144:77–85.10.1016/j.nlm.2017.06.003
  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
  • Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005;37(2):75–82.
  • Moore G, Durstine JL, Painter P. ACSM's Exercise Management for Persons With Chronic Diseases and Disabilities. 4 ed. Champaign, IL: Human Kinetics, Inc.; 2016.
  • Pescatello LS. ACSM's Guidelines for Exercise Testing and Prescription. 9 ed. Philadelphia, PA: Wolters Kluwer Health; 2014:56–164.
  • Goss FL, Robertson RJ, Haile L, Nagle EF, Metz KF, Kim K. Use of ratings of perceived exertion to anticipate treadmill test termination in patients taking beta-blockers. Percept Mot Skills. 2011;112(1):310–318.10.2466/06.10.15.PMS.112.1.310-318
  • Borg G. Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. Int J Sports Med. 1982;03(03):153–158.10.1055/s-2008-1026080
  • Borg G, Hassmén P, Lagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56(6):679–685.10.1007/BF00424810
  • Hall MM, Rajasekaran S, Thomsen TW, Peterson AR. Lactate: Friend or Foe. PM R. 2016;8(3):S8–S15.10.1016/j.pmrj.2015.10.018
  • Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci. 2016;17(9):679–685.
  • Steinman MQ, Gao V, Alberini CM. The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Front Integr Neurosci. 2016;10:10.
  • Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013;36(7):396–404.10.1016/j.tins.2013.04.002
  • Schiffer T, Schulte S, Sperlich B, Achtzehn S, Fricke H, Strüder HK. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci Lett. 2011;488(3):234–237.10.1016/j.neulet.2010.11.035
  • Coco M, Alagona G, Rapisarda G, et al. Elevated blood lactate is associated with increased motor cortex excitability. Somatosens Mot Res. 2010;27(1):1–8.10.3109/08990220903471765
  • Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464–472.10.1016/j.tins.2007.06.011
  • Lanz TA, Bove SE, Pilsmaker CD, et al. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma. Biomarkers. 2012;17(6):524–531.10.3109/1354750X.2012.694476
  • Gómez-Palacio-Schjetnan A, Escobar ML. Neurotrophins and synaptic plasticity. Curr Top Behav Neurosci. 2013;15:117–136.10.1007/978-3-642-36232-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.