1,207
Views
21
CrossRef citations to date
0
Altmetric
Review

Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: systematic review and meta-analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 539-550 | Received 05 Mar 2021, Accepted 08 Aug 2021, Published online: 21 Aug 2021

References

  • Marotta N, Demeco A, Moggio L, Ammendolia A. The adjunct of transcranial direct current stimulation to Robot-assisted therapy in upper limb post-stroke treatment. J Med Eng Technol. 2021 Aug;45(6):494–501. doi:10.1080/03091902.2021.1922527.
  • Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741‐754. doi:10.1016/S1474-4422(09)70150-4.
  • Duncan PW, Zorowitz R, Bates B, et al. Management of adult stroke rehabilitation care: a clinical practice guideline. Stroke. 2005;36(9):e100‐e143.doi:10.1161/01.STR.0000180861.54180.FF.
  • Peters HT, Page SJ. Integrating mental practice with task-specific training and behavioral supports in poststroke rehabilitation: evidence, components, and augmentative opportunities. Phys Med Rehabil Clin N Am. 2015;26(4):715‐727. doi:10.1016/j.pmr.2015.
  • Moggio L, De Sire A, Marotta N, Demeco A, Ammendolia A. Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disabil Rehabil. Jul 2021;5:1–9. doi:10.1080/09638288.2021.1946175.
  • De Sire A, Baricich A, Ferrillo M, Migliario M, Cisari C, Invernizzi M. Buccal hemineglect: is it useful to evaluate the differences between the two halves of the oral cavity for the multidisciplinary rehabilitative management of right brain stroke survivors? A cross-sectional study. Top Stroke Rehabil. 2020 Apr;27(3):208–214. doi:10.1080/10749357.2019.1673592.
  • Baricich A, Picelli A, Carda S, et al. Electrical stimulation of antagonist muscles after botulinum toxin type A for post-stroke spastic equinus foot. A randomized single-blind pilot study. Ann Phys Rehabil Med. 2019;62(4):214–219.doi:10.1016/j.rehab.2019.06.002.
  • Baricich A, Picelli A, Santamato A, et al. Safety profile of high-Dose botulinum toxin type a in post-stroke spasticity treatment. Clin Drug Investig. 2018;38(11):991–1000.doi:10.1007/s40261-018-0701-x.
  • Thibaut A, Chatelle C, Ziegler E, Bruno MA, Laureys S, Gosseries O. Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 2013;27(10):1093‐1105. doi:10.3109/02699052.2013.804202.
  • Calafiore D, Negrini F, Tottoli N, Ferraro F, Ozyemisci Taskiran O, De Sire A. Efficacy of robotic exoskeleton for gait rehabilitation in patients with subacute stroke: a systematic review with meta-analysis. Eur J Phys Rehabil Med. Jul 12, 2021. doi:10.23736/S1973-9087.21.06846-5.
  • Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM R. 2018 Sep;10(Suppl 9):S174–S188. doi:10.1016/j.pmrj.2018.06.005.
  • Yue Z, Zhang X, Wang J. Hand rehabilitation robotics on poststroke motor recovery. Behav Neurol. 2017;2017:3908135. doi:10.1155/2017/3908135.
  • Jakob I, Kollreider A, Germanotta M, et al. Robotic and sensor technology for upper limb rehabilitation. PM R. 2018;10(9 Suppl 2):S189‐S197.doi:10.1016/j.pmrj.2018.07.011.
  • Lum PS, Godfrey SB, Brokaw EB, Holley RJ, Nichols D. Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S242‐S254. doi:10.1097/PHM.0b013e31826bcedb.
  • Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018 Jun 5;15(1):46. doi:10.1186/s12984-018-0383-x. PMID: 29866106; PMCID: PMC5987585.
  • Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010 Dec;23(6):661–670. doi:10.1097/WCO.0b013e32833e99a4. PMID: 20852421.
  • Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of Robot-Assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107‐121. doi:10.1177/1545968316666957.
  • Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111–121. doi:10.1177/1545968307305457.
  • Daunoraviciene K, Adomaviciene A, Grigonyte A, Griškevičius J, Juocevicius A. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. Technol Health Care. 2018;26(S2):533–542. doi:10.3233/THC-182500.
  • Otaka E, Otaka Y, Kasuga S, et al. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. J Neuroeng Rehabil. 2015 Aug 12;12(1):66. doi:10.1186/s12984-015-0059-8.
  • Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. doi:10.1136/bmj.b2535.
  • Higgins JP, Altman DG, Gøtzsche PC, et al., Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011Oct18;343:d5928. 10.1136/bmj.d5928. PMID: 22008217; PMCID: PMC3196245.
  • Malmut L, Lin C, Srdanovic N, Kocherginsky M, Harvey RL, Prabhakaran S. Arm subscore of motricity index to predict recovery of upper limb dexterity in patients with acute ischemic stroke. Am J Phys Med Rehabil. 2020;99(4):300‐304. doi:10.1097/PHM.00000000.
  • Vanoglio F, Bernocchi P, Mulè C, et al. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clin Rehabil. 2017;31(3):351‐360.doi:10.1177/0269215516642606.
  • Orihuela-Espina F, Roldán GF, Sánchez-Villavicencio I, et al. Robot training for hand motor recovery in subacute stroke patients: a randomized controlled trial. J Hand Ther. 2016;29(1):51‐57.doi:10.1016/j.jht.2015.11.006.
  • Calabrò RS, Accorinti M, Porcari B, et al. Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clin Neurophysiol. 2019;130(5):767‐780. doi:10.1016/j.clinph.2019.02.013.
  • Marotta N, Demeco A, Marinaro C, et al. Comparative effectiveness of orthoses for thumb osteoarthritis: a systematic review and network meta-analysis. Arch Phys Med Rehabil. 2021;102(3):502–509.doi:10.1016/j.apmr.2020.06.012.
  • Marotta N, Demeco A, Moggio L, et al. Comparative effectiveness of breathing exercises in patients with chronic obstructive pulmonary disease. Complement Ther Clin Pract. 2020;41:101260. doi:10.1016/j.ctcp.2020.101260.
  • Sale P, Mazzoleni S, Lombardi V, et al. Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. Int J Rehabil Res. 2014;37(3):236‐242.doi:10.1097/MRR.0000000000000059.
  • Villafañe JH, Taveggia G, Galeri S, et al. Efficacy of Short-Term Robot-Assisted rehabilitation in patients with hand paralysis after stroke: a randomized clinical trial. Hand (N Y). 2018;13(1):95‐102.doi:10.1177/1558944717692096.
  • Germanotta M, Gower V, Papadopoulou D, et al. Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. J Neuroeng Rehabil. 2020;17(1):1. 2020 Jan 3. doi:10.1186/s12984-019-0634-5.
  • Fasoli SE, Adans-Dester CP. A paradigm shift: rehabilitation robotics, cognitive skills training, and function after stroke. Front Neurol. 2019;10:1088. Published. 2019 Oct 15. doi:10.3389/fneur.2019.01088.
  • Padua L, Imbimbo I, Aprile I, et al. Cognitive reserve as a useful variable to address robotic or conventional upper limb rehabilitation treatment after stroke: a multicentre study of the Fondazione Don Carlo Gnocchi. Eur J Neurol. 2020;27(2):392‐398. doi:10.1111/ene.14090.
  • Taveggia G, Borboni A, Salvi L, et al. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in stroke patients: a randomized controlled study. Eur J Phys Rehabil Med. 2016;52(6):767‐773.
  • Susanto EA, Tong RK, Ockenfeld C, Ho NS. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. J Neuroeng Rehabil. 2015;12(1):42. doi:10.1186/s12984-015-0033-5. 2015 Apr 25. Published.
  • Volpe BT, Krebs HI, Hogan N, Edelstein OTR L, Diels C, Aisen M. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology. 2000 May 23;54(10):1938–1944. doi:10.1212/wnl.54.10.1938. PMID: 10822433.
  • Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am J Phys Med Rehabil. 2012 Nov;91(11 Suppl 3):S232-41. doi: 10.1097/PHM.0b013e31826bce79. PMID: 23080039; PMCID: PMC3487467.
  • Hesse S, Heß A, Werner CC, Kabbert N, Buschfort R. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial. Clin Rehabil. 2014 Jul;28(7):637. doi:10.1177/0269215513516967.
  • Straudi S, Baroni A, Mele S, et al. Effects of a Robot-Assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial. Arch Phys Med Rehabil. 2020;101(2):309‐316.doi:10.1016/j.apmr.2019.09.016.
  • Hwang CH, Seong JW, Son DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil. 2012 Aug;26(8):696–704. doi:10.1177/0269215511431473. Epub 201.
  • McConnell AC, Moioli RC, Brasil FL, et al. Robotic devices and brain-machine interfaces for hand rehabilitation stroke. J Rehabil Med. 2017;49(6):449‐460.doi:10.2340/16501977-2229.
  • Franchignoni F, Vercelli S, Giordano A, Sartorio F, Bravini E, Ferriero G. Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (QuickDASH). J Orthop Sports Phys Ther. 2014 Jan;44(1):30‐9. doi: 10.2519/jospt.2014.4893. Epub 2013 Oct 30. PMID: 24175606.
  • Lee S, Lee YS, Kim J. Automated evaluation of upper-Limb motor function impairment using Fugl-Meyer assessment. IEEE Trans Neural Syst Rehabil Eng. 2018;26(1):125‐134. doi:10.1109/TNSRE.2017.2755667.
  • Franck JA, Smeets RJEM, Seelen HAM, Tremblay F. Changes in arm-hand function and arm-hand skill performance in patients after stroke during and after rehabilitation. PLoS One. 2017 Jun 14;12(6):e0179453. doi:10.1371/journal.pone.0179453.
  • Lewthwaite R, Winstein CJ, Lane CJ, et al. Accelerating stroke recovery: body structures and functions, activities, participation, and quality of life outcomes from a large rehabilitation trial. Neurorehabil Neural Repair. 2018 Feb;32(2):150–165. doi:10.1177/1545968318760726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.