2,540
Views
2
CrossRef citations to date
0
Altmetric
Review

Upper limb assessment with inertial measurement units according to the international classification of functioning in stroke: a systematic review and correlation meta-analysis

ORCID Icon, , , , &
Pages 66-85 | Received 26 Jun 2022, Accepted 24 Mar 2023, Published online: 21 Apr 2023

References

  • Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res. 2017;120(3):439–448. doi:10.1161/CIRCRESAHA.116.308413.
  • Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017;31(9):793–799. doi:10.1177/1545968317732668.
  • Feys HM, De Weerdt WJ, Selz BE, et al. Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke. Apr 1998;29(4):78. doi:10.1161/01.STR.29.4.785.
  • Hatem SM, Saussez G, Della Faille M, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442. 5-92. Published 2016 Sep 13. 10.3389/fnhum.2016.00442
  • Rafsten L, Meirelles C, Danielsson A, Sunnerhagen KS. Impaired motor function in the affected arm predicts impaired postural balance after stroke: a cross sectional study. Front Neurol. 2019;10:912. Published 2019 Aug 21. doi:10.3389/fneur.2019.00912.
  • Lieshout ECCV, van de Port IG, Dijkhuizen RM, Visser-Meily JMA. Does upper limb strength play a prominent role in health-related quality of life in stroke patients discharged from inpatient rehabilitation? Top Stroke Rehabil. Oct, 2020;27(7):525–533. doi:10.1080/10749357.2020.1738662.
  • Martino Cinnera A, Bonnì S, Pellicciari MC, Giorgi F, Caltagirone C, Koch G. Health-related quality of life (HRQoL) after stroke: positive relationship between lower extremity and balance recovery. Top Stroke Rehabil. Oct, 2020;27(7):534–540. doi:10.1080/10749357.2020.1726070.
  • Li HT, Huang JJ, Pan CW, Chi HI, Pan MC. Inertial sensing based assessment methods to quantify the effectiveness of post-stroke rehabilitation. Sensors (Basel). 2015;15(7):16196–16209. doi:10.3390/s150716196.
  • Longhi M, Merlo A, Prati P, Giacobbi M, Mazzoli D. Instrumental indices for upper limb function assessment in stroke patients: a validation study. J Neuroeng Rehabil. 2016 Jun 8;13(1):52. doi:10.1186/s12984-016-0163-4.
  • Raghavan P. Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am. 2015;26(4):599–610. doi:10.1016/j.pmr.2015.06.008.
  • Wade DT, Halligan PW. The biopsychosocial model of illness: a model whose time has come. Clin Rehabil. Aug, 2017;31(8):995–1004. doi:10.1177/0269215517709890.
  • Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. Apr-Jun, 2013;26(2):104–115. doi:10.1016/j.jht.2012.06.005.
  • Santisteban L, Térémetz M, Bleton JP, Baron JC, Maier MA, Lindberg PG. Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. PLoS One. 2016 May 6;11(5):e0154792. doi:10.1371/journal.pone.0154792.
  • Faria-Fortini I, Michaelsen SM, Cassiano JG, Teixeira-Salmela LF. Upper extremity function in stroke subjects: relationships between the international classification of functioning, disability, and health domains. J Hand Ther. Jul-Sep, 2011;24(3):257–265. doi:10.1016/j.jht.2011.01.002.
  • Brognara L, Palumbo P, Grimm B, Palmerini L. Assessing gait in Parkinson’s disease using wearable motion sensors: a systematic review. Diseases. 2019 Feb 5;7(1):18. doi:10.3390/diseases7010018.
  • Johansson D, Malmgren K, Alt Murphy M. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. J Neurol. Aug, 2018;265(8):1740–1752. doi:10.1007/s00415-018-8786-y.
  • Summa A, Vannozzi G, Bergamini E, Iosa M, Morelli D, Cappozzo A. Multilevel upper body movement control during gait in children with cerebral Palsy. PLoS One. 2016 Mar 21;11(3):e0151792. doi:10.1371/journal.pone.0151792.
  • Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices. Jul, 2016;13(7):641–659. doi:10.1080/17434440.2016.1198694.
  • Picerno P, Iosa M, D’souza C, Benedetti MG, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis: a five-year update. Expert Rev Med Devices. Oct, 2021;12(sup1):1–16. doi:10.1080/17434440.2021.1988849.
  • Iosa M, De Sanctis M, Summa A, Bergamini E, Morelli D, Vannozzi G. Usefulness of magnetoinertial wearable devices in neurorehabilitation of children with cerebral palsy. Appl Bionics Biomech. 2018; 2018:5405680. 10.1155/2018/5405680.
  • Tramontano M, Bergamini E, Iosa M, Belluscio V, Vannozzi G, Morone G. Vestibular rehabilitation training in patients with subacute stroke: a preliminary randomized controlled trial. NeuroRehabilitation. 2018;43(2):247–254. doi:10.3233/NRE-182427.
  • Vienne A, Barrois RP, Buffat S, Ricard D, Vidal PP Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. Front Psychol. 2017 May18; 8:817. 10.3389/fpsyg.2017.00817
  • Martino Cinnera A, Morone G, Marrano S, Vannozzi G, Picerno P. Feasibility of using wearable inertial sensors for assessing gait changes after total knee arthroplasty: a systematic review and meta-analysis. Minerva Orthopedics. Oct, 2021;72(5):498–508. doi:10.23736/S2784-8469.21.04137-7.
  • Carnevale A, Longo UG, Schena E, et al. Wearable systems for shoulder kinematics assessment: a systematic review. BMC Musculoskelet Disord. 2019 Nov 15;20(1):546. doi:10.1186/s12891-019-2930-4.
  • Maceira-Elvira P, Popa T, Schmid AC, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil. 2019 Nov 19;16(1):142. doi:10.1186/s12984-019-0612-y.
  • Smuck M, Odonkor CA, Wilt JK, Schmidt N, Swiernik MA. The emerging clinical role of wearables: factors for successful implementation in healthcare. NPJ Digit Med. Published 2021 Mar 10 2021;4(1):45. doi:10.1038/s41746-021-00418-3.
  • Parker J, Powell L, Mawson S. Effectiveness of upper limb wearable technology for improving activity and participation in adult stroke survivors: systematic review. J Med Internet Res. 2020 Jan 8;22(1):e15981. doi:10.2196/15981.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol. Jun 2021;134:178–189. doi:10.1016/j.jclinepi.2021.03.001.
  • Bai L, Pepper MG, Yan Y, Phillips M, Sakel M. Low cost inertial sensors for the motion tracking and orientation estimation of human upper limbs in neurological rehabilitation. IEEE Access. 2020;8:54254–54268.
  • Bai L, Pepper MG, Yan Y, Phillips M, Sakel M Quantitative measurement of Upper limb motion pre- and post-treatment with Botulinum Toxin. Meas. 2021 Jan 15; 168:108304. 10.1016/j.measurement.2020.108304
  • Bertomeu-Motos A, Blanco A, Badesa FJ, Barios JA, Zollo L, Garcia-Aracil N. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end effector robotic devices. J Neuroeng Rehabil. 2018 Feb 20;15(1):10. doi:10.1186/s12984-018-0348-0.
  • Bhagubai MMC, Wolterink G, Schwarz A, Held JPO, Van Beijnum BF, Veltink PH Quantifying pathological synergies in the upper extremity of stroke subjects with the use of inertial measurement units: a pilot study. IEEE J Transl Eng Health Med. 2020 Dec 7; 9:2100211. 10.1109/JTEHM.2020.3042931
  • Kang S, Shin JH, Kim IY, Lee J, Lee JY, Jeong E. Patterns of enhancement in paretic shoulder kinematics after stroke with musical cueing. Sci Rep. 2020 Oct 22;10(1):18109. doi:10.1038/s41598-020-75143-0.
  • Li J, Pan B, Jin T, et al. A single task assessment system of upper-limb motor function after stroke. Technol Health Care. 2016 Apr 29;24(Suppl s2):S707–15. doi:10.3233/THC-161199.
  • Biswas D, Corda D, Baldus G, et al. Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist. Physiol Meas. Sep 2014;35(9):1751–1768. doi:10.1088/0967-3334/35/9/1751.
  • Bochniewicz EM, Emmer G, McLeod A, Barth J, Dromerick AW, Lum P. Measuring functional arm movement after stroke using a single wrist-worn sensor and machine learning. J Stroke Cerebrovasc Dis. Dec, 2017;26(12):2880–2887. doi:10.1016/j.jstrokecerebrovasdis.2017.07.004.
  • Held JPO, Klaassen B, Eenhoorn A, et al.Inertial sensor measurements of upper limb kinematics in stroke patients in clinic and home environmentFront Bioeng Biotechnol2018 Apr 12610.3389/fbioe.2018.00027
  • Lin BS, Hsiao PC, Yang SY, Su CS, Lee IJ. Data glove system embedded with inertial measurement units for hand function evaluation in stroke patients. IEEE Trans Neural Syst Rehabil Eng. Nov, 2017;25(11):2204–2213. doi:10.1109/TNSRE.2017.2720727.
  • Mahmoud SS, Cao Z, Fu J, Gu X, Fang Q Occupational therapy assessment for upper limb rehabilitation: a multisensor-based approach. Front Digit Health. 2021 Dec 17; 3:784120. 10.3389/fdgth.2021.784120
  • Mazomenos EB, Biswas D, Cranny A, et al. Detecting elementary arm movements by tracking upper limb joint angles with MARG sensors. IEEE J Biomed Health Inform. Jul 2016;20(4):1088–1099. doi:10.1109/JBHI.2015.2431472.
  • Michaelsen SM, Gomes RP, Marques AP, et al. Using an accelerometer for analyzing a reach-to-grasp movement after stroke. Motriz: Revista de Educação Física. Oct/Dec 2013;19(4):746–752. doi:10.1590/S1980-65742013000400012.
  • Repnik E, Puh U, Goljar N, Munih M, Mihelj M. Using inertial measurement units and electromyography to quantify movement during action research arm test execution. Sensors (Basel). 2018 Aug 22;18(9):2767. doi:10.3390/s18092767.
  • Schwarz A, Bhagubai MMC, Wolterink G, Held JPO, Luft AR, Veltink PH. Assessment of upper limb movement impairments after stroke using wearable inertial sensing. Sensors (Basel). 2020 Aug 24;20(17):4770. doi:10.3390/s20174770.
  • Schwarz A, Veerbeek JM, Held JPO, Buurke JH, Luft AR Measures of interjoint coordination post-stroke across different upper limb movement tasks. Front Bioeng Biotechnol. 2021 Jan 28; 8:620805. 10.3389/fbioe.2020.620805
  • Thies SB, Tresadern PA, Kenney LP, et al. Movement variability in stroke patients and controls performing two upper limb functional tasks: a new assessment methodology. J Neuroeng Rehabil. 2009 Jan 23;6(1):2. doi:10.1186/1743-0003-6-2.
  • van Meulen FB, Reenalda J, Buurke JH, Veltink PH. Assessment of daily-life reaching performance after stroke. Ann Biomed Eng. Feb, 2015;43(2):478–486. doi:10.1007/s10439-014-1198-y.
  • van Meulen FB, Klaassen B, Held J, et al. Objective evaluation of the quality of movement in daily life after stroke. Front Bioeng Biotechnol. 2016 Jan 13; 3: 210. 10.3389/fbioe.2015.00210.
  • Wade E, Chen C, Winstein CJ. Spectral analyses of wrist motion in individuals poststroke: the development of a performance measure with promise for unsupervised settings. Neurorehabil Neural Repair. Feb, 2014;28(2):169–178. doi:10.1177/1545968313505911.
  • Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763–1768. doi:10.1213/ANE.0000000000002864.
  • Gjerdevik M, Heuch I. Improving the error rates of the Begg and Mazumdar test for publication bias in fixed effects meta-analysis. BMC Med Res Methodol. 2014;14(1):109. doi:10.1186/1471-2288-14-109.
  • Hesam-Shariati N, Trinh T, Thompson-Butel AG, Shiner CT, Redmond SJ, McNulty PA. Improved kinematics and motor control in a longitudinal study of a complex therapy movement in chronic stroke. IEEE Trans Neural Syst Rehabil Eng. Apr, 2019;27(4):682–691. doi:10.1109/TNSRE.2019.2895018.
  • Park E, Lee K, Han T, Nam HS. Automatic grading of stroke symptoms for rapid assessment using optimized machine learning and 4-limb kinematics: clinical validation study. J Med Internet Res. 2020 Sep 16;22(9):e20641. doi:10.2196/20641.
  • Kim JY, Park G, Lee SA, Nam Y. Analysis of machine learning-based assessment for elbow spasticity using inertial sensors. Sensors (Basel). 2020 Mar 14;20(6):1622. doi:10.3390/s20061622.
  • Ang WS, Geyer H, Chen I-M, Ang WT. Objective assessment of spasticity with a method based on a human upper limb model. IEEE Trans Neural Syst Rehabil Eng. 2018;26(7):1414–1423. doi:10.1109/TNSRE.2018.2821197.
  • Chen Y, Yu S, Cai Q, et al. A spasticity assessment method for voluntary movement using data fusion and machine learning. Biomedical Signal Processing and Control. 2021;65:65, 102353. doi:10.1016/j.bspc.2020.102353.
  • Paulis WD, Horemans HL, Brouwer BS, Stam HJ. Excellent test-retest and inter-rater reliability for Tardieu Scale measurements with inertial sensors in elbow flexors of stroke patients. Gait Posture. Feb, 2011;33(2):185–189. doi:10.1016/j.gaitpost.2010.10.094.
  • Chen ZJ, He C, Gu MH, Xu J, Huang XL Kinematic evaluation via inertial measurement unit associated with upper extremity motor function in subacute stroke: a cross-sectional study. J Healthc Eng. 2021 Aug 19; 2021:4071645. 10.1155/2021/4071645
  • Nikmaram N, Scholz DS, Großbach M, et al. Musical sonification of arm movements in stroke rehabilitation yields limited benefits. Front Neurosci. 2019 Dec 20; 13: 1378. 10.3389/fnins.2019.01378.
  • Nie JZ, Nie JW, Hung NT, Cotton RJ, Slutzky MW. Portable, open-source solutions for estimating wrist position during reaching in people with stroke. Sci Rep. 2021 Nov 18;11(1):22491. doi:10.1038/s41598-021-01805-2.
  • Pan B, Huang Z, Jin T, Wu J, Zhang Z, Shen Y. Motor function assessment of upper limb in stroke patients. J Healthc Eng. 2021;2021:6621950. Feb 24; 2021. doi:10.1155/2021/6621950.
  • Rau CL, Chen YP, Lai JS, et al. Low-cost tele-assessment system for home-based evaluation of reaching ability following stroke. Telemed J E Health. Dec 2013;19(12):973–978. doi:10.1089/tmj.2012.0300.
  • Salazar AJ, Silva AS, Silva C, et al. Low-cost wearable data acquisition for stroke rehabilitation: a proof-of-concept study on accelerometry for functional task assessment. Top Stroke Rehabil. Jan-Feb 2014;21(1):12–22. doi:10.1310/tsr2101-12.
  • Tedim Cruz V, Bento VF, Ribeiro DD, Araújo I, Branco CA, Coutinho P. A novel system for automatic classification of upper limb motor function after stroke: an exploratory study. Med Eng Phys. Dec, 2014;36(12):1704–1710. doi:10.1016/j.medengphy.2014.09.009.
  • Zollo L, Rossini L, Bravi M, Magrone G, Sterzi S, Guglielmelli E. Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation. Med Biol Eng Comput. Oct, 2011;49(10):1131–1144. doi:10.1007/s11517-011-0808-1.
  • Smania N, Picelli A, Munari D, et al. Rehabilitation procedures in the management of spasticity. Eur J Phys Rehabil Med. Sep 2010;46(3):423–438.
  • Bar-On L, Aertbeliën E, Molenaers G, Dan B, Desloovere K. Manually controlled instrumented spasticity assessments: a systematic review of psychometric properties. Dev Med Child Neurol. Oct, 2014;56(10):932–950. doi:10.1111/dmcn.12419.
  • Biering-Sørensen F, Nielsen JB, Klinge K. Spasticity-assessment: a review. Spinal Cord. 2006;44(12):708–722. doi:10.1038/sj.sc.3101928.
  • David A, Subash T, Varadhan SKM, Melendez-Calderon A, Balasubramanian S A Framework for Sensor-Based Assessment of Upper-Limb Functioning in Hemiparesis. Front Hum Neurosci. 2021 Jul 22; 15:667509. 10.3389/fnhum.2021.667509
  • Porciuncula F, Roto AV, Kumar D, et al. Wearable Movement Sensors for Rehabilitation: a Focused Review of Technological and Clinical Advances. PM&R. 2018 Sep;10(Suppl 9S2):S220–232. Erratum in: PM R. 2018 Dec;10(12):1437. doi:10.1016/j.pmrj.2018.06.013.
  • Winstein CJ, Stein J, Arena R, et al. Guidelines for Adult Stroke Rehabilitation and Recovery: a Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association [published correction appears in Stroke. Stroke. 2016;47(6):e98–169. 2017 Feb;48(2):e78] [published correction appears in Stroke. 2017 Dec;48(12):e369]. doi:10.1161/STR.0000000000000098.
  • Lang CE, Barth J, Holleran CL, Konrad JD, Bland MD. Implementation of Wearable Sensing Technology for Movement: pushing Forward into the Routine Physical Rehabilitation Care Field. Sensors (Basel). Published 2020 Oct 10 2020;20(20):5744. doi:10.3390/s20205744.
  • Boukhennoufa I, Zhai X, Utti V, Jackson J, McDonald-Maier KD. Wearable sensors and machine learning in post-stroke rehabilitation assessment: a systematic review. Elsevier, Biomedical Signal Processing and Control. January 2022;71: 10.1016/j.bspc.2021.103197