249
Views
21
CrossRef citations to date
0
Altmetric
Case reports

The voluntary driven exoskeleton Hybrid Assistive Limb (HAL) for postoperative training of thoracic ossification of the posterior longitudinal ligament: a case report

ORCID Icon, , , , , , , , , , , , , , & show all

References

  • Kawamoto H and Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL. Adv Robot 2005;19(7):717–34. doi: 10.1163/1568553054455103
  • Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol 2013;13:141. doi: 10.1186/1471-2377-13-141
  • Kubota S, Nakata Y, Eguchi K, Kawamoto H, Kamibayashi K, Sakane M, et al. Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Arch Phys Med Rehabil 2013;94(6):1080–7. doi: 10.1016/j.apmr.2012.12.020
  • Aach M, Cruciger O, Sczesny-Kaiser M, Hoeffken O, Meindl R, Tegenthoff M, et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J 2014;14(12):2847–53. doi: 10.1016/j.spinee.2014.03.042
  • Maeshima S, Osawa A, Nishio D, Hirano Y, Takeda K, Kigawa H, et al. Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. BMC Neurol 2011;11:116. doi: 10.1186/1471-2377-11-116
  • Cruciger O, Tegenthoff M, Schwenkreis P, Schildhauer T, Aach M. Locomotion training using voluntary driven exoskeleton (HAL) in acute incomplete SCI. Neurology 2014;83(5):474. doi: 10.1212/WNL.0000000000000645
  • Sakakima H, Ijiri K, Matsuda F, Tominaga H, Biwa T, Yone K, et al. A newly developed robot suit hybrid assistive limb facilitated walking rehabilitation after spinal surgery for thoracic ossification of the posterior longitudinal ligament: a case report. Case Rep Orthop 2013;2013:621405.
  • Catz A, Itzkovich M, Agranov E, Ring H, Tamir A. SCIM-spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord 1997;35(12):850–6. doi: 10.1038/sj.sc.3100504
  • Kim M, Burns A, Ditunno J, Marino R. The assessment of walking capacity using the walking Index for spinal cord injury: self-selected versus maximal levels. Arch Phys Med Rehabil 2007;88(6):762–7. doi: 10.1016/j.apmr.2007.03.021
  • Ditunno J, Ditunno P, Scivoletto G, Patrick M, Dijkers M, Barbeau H, et al. The Walking Index for Spinal Cord Injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord 2013;51(5):346–55. doi: 10.1038/sc.2013.9
  • Scivoletto G, Tamburella F, Laurenza L, Torre M, Molinari M, Ditunno J. Walking Index for Spinal Cord Injury version II in acute spinal cord injury: reliability and reproducibility. Spinal Cord 2014;52(1):65–9. doi: 10.1038/sc.2013.127
  • Sinkjaer T, Andersen J, Ladouceur M, Christensen L, Nielsen J. Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol 2000;523(3):817–27. doi: 10.1111/j.1469-7793.2000.00817.x
  • Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 1987;57:169–85. doi: 10.1007/BF00364149
  • Nudo R. Postinfarct cortical plasticity and behavioral recovery. Stroke 2007;38(2):840–5. doi: 10.1161/01.STR.0000247943.12887.d2
  • Barbeau H. Locomotor training in neurorehabilitation: emerging rehabilitation concepts. Neurorehabil Neural Repair 2003;17(1):3–11. doi: 10.1177/0888439002250442
  • Windhorst U. Muscle proprioceptive feedback and spinal networks. Brain Res Bull 2007;73(4–6):155–202. doi: 10.1016/j.brainresbull.2007.03.010
  • Pearson K. Proprioceptive regulation of locomotion. Curr Opin Neurobiol 1995;5(6):786–91. doi: 10.1016/0959-4388(95)80107-3
  • Belda-Lois J, Mena-del Horno S, Bermejo-Bosch I, Moreno J, Pons J, Farina D, et al. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 2011;8:66. doi: 10.1186/1743-0003-8-66
  • Huang V, Krakauer J. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil 2009;6(1):5–13. doi: 10.1186/1743-0003-6-5
  • Plautz E, Milliken G, Nudo R. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000;74(1):27–55. doi: 10.1006/nlme.1999.3934
  • Ros T, Munneke M, Parkinson L, Gruzelier J. Neurofeedback facilitation of implicit motor learning. Biol Psychol 2014;95:54–8. doi: 10.1016/j.biopsycho.2013.04.013
  • Dewiputri W, Auer T. Functional magnetic resonance imaging (FMRI) neurofeedback: implementations and applications. Malays J Med Sci 2013;20(5):5–15.
  • Weiskopf N. Real-time fMRI and its application to neurofeedback. NeuroImage 2012;62(2):682–92. doi: 10.1016/j.neuroimage.2011.10.009
  • Fan Y, Wu C, Liu H, Lin K, Wai Y, Chen Y. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Front Hum Neurosci 2015;9:546. doi: 10.3389/fnhum.2015.00546
  • Nooijen C, Hoeve N, Field-Fote E. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 2009;6:36. doi: 10.1186/1743-0003-6-36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.