84
Views
5
CrossRef citations to date
0
Altmetric
Articles

Detection of Phosmet Residues on Navel Orange Skin by Surface-enhanced Raman Spectroscopy

, , , &

References

  • Belmonte VallesN., RetamalM., MezcuaM., & Fernández-AlbaA. R. (2012). A sensitive and selective method for the determination of selected pesticides in fruit by gas chromatography/mass spectrometry with negative chemical ionization. Journal of Chromatography A, 1264, 110–116. doi:10.1016/j.chroma.2012.09.063.
  • DingW., ZhuZ., ZhangC., ChenX., JiangW., LiangY., & … TianF. (2013). Detection of smell change of flue-cured tobacco based on an electronic nose. Intelligent Automation & Soft Computing, 19, 195–206. doi:10.1080/10798587.2013.787187.
  • GrahamD., & FauldsK. (2008). Quantitative SERRS for DNA sequence analysis. Chemical Society Reviews, 37, 1042–1051. doi:10.1039/b707941a.
  • GrimaltS., PozoÓ. J., SanchoJ. V., & HernándezF. (2007). Use of liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to investigate pesticide residues in fruits. Analytical Chemistry, 79, 2833–2843. doi:10.1021/ac061233x.
  • GuerriniL., Sanchez-cortesS. C., CruzV. L., MartinezS., RistoriS., & FeisA. (2011). Surface-enhanced Raman spectra of dimethoate and omethoate. Journal of Raman Spectroscopy, 42, 980–985. doi:10.1002/jrs.2823.
  • Hernández-BorgesJ., CabreraJ. C., Rodríguez-DelgadoM. Á., Hernández-SuárezE. M., & SaúcoV. G. (2009). Analysis of pesticide residues in bananas harvested in the Canary Islands. Food Chemistry, 113, 313–319.
  • KarA., MandalK., & SinghB. (2012). Decontamination of chlorantraniliprole residues on cabbage and cauliflower through household processing methods. Bulletin of Environmental Contamination and Toxicology, 88, 501–506. doi:10.1007/s00128-012-0534-x.
  • KimH., KosudaK. M., Van DuyneR. P., & StairP. C. (2010). Resonance Raman and surface and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev, 39, 4820–4844.
  • KolosovaA. Y., ParkJ. H., EreminS. A., KangS. J., & ChungD. H. (2003). Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of the organophosphorus pesticide parathion-methyl. Journal of Agricultural and Food Chemistry, 51, 1107–1114. doi:10.1021/jf025801v.
  • LeeP. C., & MeiselD. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 86, 3391–3395. doi:10.1021/j100214a025.
  • LiuB., HanG., ZhangZ., LiuR., JiangC., WangS., & HanM. (2012). Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Analytical Chemistry, 84, 255–261. doi:10.1021/ac202452t.
  • LiuB., ZhouP., LiuX., SunX., LiH., & LinM. (2013). Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food and Bioprocess Technology, 6, 710–718. doi:10.1007/s11947-011-0774-5.
  • LiuM., HashiY., SongY., & LinJ. (2005). Simultaneous determination of carbamate and organophosphorus pesticides in fruits and vegetables by liquid chromatography–mass spectrometry. Journal of Chromatography A, 1097, 183–187. doi:10.1016/j.chroma.2005.10.022.
  • LiuY., & YingY. (2006). Rapid non-destructive determination of maturity in Fuji apple using FT-NIR spectroscopy. Transactions of the ASABE, 49, 91–95.
  • MukherjeeK., Sanchez-CortesS., & GarcõÂa-ramosJ. V. (2001). Raman and surface-enhanced Raman study of insecticide cyromazine. Vibrational Spectroscopy, 25, 91–99. doi:10.1016/S0924-2031(00)00108-9.
  • NieS., & EmoryS. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102–1106. doi:10.1126/science.275.5303.1102.
  • OrtelliD., EdderP., & CorviC. (2005). Pesticide residues survey in citrus fruits. Food Additives and Contaminants, 22, 423–428. doi:10.1080/02652030500089903.
  • PoppJ., & MayerhöferT. (2009). Surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 394, 1717–1718. doi:10.1007/s00216-009-2864-z.
  • SeebunruengK., SantaladchaiyakitY., SoisungnoenP., & SrijaranaiS. (2011). Catanionic surfactant ambient cloud point extraction and high-performance liquid chromatography for simultaneous analysis of organophosphorus pesticide residues in water and fruit juice samples. Analytical and Bioanalytical Chemistry, 401, 1703–1712. doi:10.1007/s00216-011-5214-x.
  • ShendeC., InscoreF., SenguptaA., StuartJ., & FarquharsonS. (2010). Rapid extraction and detection of trace Chlorpyrifos-methyl in orange juice by surface-enhanced Raman spectroscopy. Sensing and Instrumentation for Food Quality and Safety, 4, 101–107. doi:10.1007/s11694-010-9100-6.
  • StricklandA. D., & BattC. A. (2009). Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Analytical Chemistry, 81, 2895–2903. doi:10.1021/ac801626x.
  • TianD., ZhaoX., & ShiZ. (2014). An efficient refining image annotation technique by combining probabilistic latent semantic analysis and random walk model. Intelligent Automation & Soft Computing, 20, 335–345. doi:10.1080/10798587.2013.878529.
  • Valdés-RamírezG., FournierD., Ramírez-SilvaM. T., & MartyJ. L. (2008). Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin. Talanta, 74, 741–746.
  • VongsvivutJ., RobertsonE. G., & McNaughtonD. (2010). Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. Journal of Raman Spectroscopy, 41, 1137–1148. doi:10.1002/jrs.2579.
  • WalzI., & SchwackW. (2007). Multienzyme inhibition assay for residue analysis of insecticidal organophosphates and carbamates. Journal of Agricultural and Food Chemistry, 55, 10563–10571. doi:10.1021/jf072348k.
  • WangX. T, ShiW. S, SheG. W, MuL. X, & LeeS. T (2010). High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides. Applied Physics Letters, 96, 053104, doi:10.1063/1.3300837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.