102
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Dimeric DOTA-α-Melanocyte-Stimulating Hormone Analogs: Synthesis and In Vivo Characteristics of Radiopeptides with High In Vitro Activity

, , , &
Pages 383-409 | Published online: 10 Oct 2008

REFERENCES

  • Reubi J C. Neuropeptide receptors in health and disease: The molecular basis for in vivo imaging. J Nucl Med 1995; 36: 1825–1835
  • Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004; 5: 292–302
  • Eberle A N, Mild G, Froidevaux S. Receptor-mediated tumor targeting with radiopeptides. Part 1. General concepts and methods: Application to somatostatin receptor-expressing tumors. J Recept Signal Transduct 2004; 24: 319–455
  • Mariani G, Erba P A, Signore A. Receptor-mediated tumor targeting with radiolabeled peptides: There is more to it than somatostatin analogs. J Nucl Med 2006; 47: 1904–1906
  • Britz-Cunningham S H, Adelstein S J. Molecular targeting with radionuclides: State of science. J Nucl Med 2003; 44: 1945–1961
  • Reubi J C. Somatostatin and other peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology 2004; 80: 51–56, (Suppl 1)
  • Reubi J C, Mäcke H R, Krenning E P. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 2005; 46: 67S–75S, (Suppl 1)
  • Froidevaux S, Eberle A N. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers 2002; 66: 161–183
  • Otte A, Hermann R, Heppeler A, Behe M, Jermann E, Powell P, Mäcke H R, Müller J. Yttrium-90 DOTATOC: First clinical results. Eur J Nucl Med 1999; 26: 439–447
  • Cybulla M, Weiner S M, Otte A. End-stage renal disease after treatment with 90Y-DOTATOC. Eur J Nucl Med 2001; 28: 1552–1554
  • Lambert B, Cybulla M, Weiner S M. van de Wiele C Ham H Dierckx R AOtte A. Renal toxicity after radionuclide therapy. Radiat Res 2004; 161: 607–611
  • Froidevaux S, Heppeler A, Eberle A N, Meier A M, Häusler M, Beglinger C, Behe M, Powell P, Mäcke H R. Preclinical comparison in AR4–2J tumor-bearing mice of four radiolabeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-somatostatin analogs for tumor diagnosis and internal radiotherapy. Endocrinology 2000; 141: 3304–3312
  • Behr T M, Becker W S, Sharkey R M, Juweid M E, Dunn R M, Bair H J, Wolf F G, Goldenberg D M. Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med 1996; 37: 829–833
  • Bernard B F, Krenning E P, Breeman W A, Rolleman E J, Bakker W H, Visser T J, Mäcke H R. de Jong M. D-Lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 1997; 24: 761–769
  • Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, Paganelli G. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumors. Eur J Nucl Med Mol Imag 2004; 31: 1038–1046
  • Kwekkeboom D J, Teunissen J J, Bakker W H, Kooij P P, de Herder W W, Feelders R A, van Eijck C H, Esser J P, Kam B L, Krenning E P. Radiolabeled somatostatin analog [177 Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 2005; 23: 2754–2762
  • Eberle A N, Beglinger C. Does 177Lu-labeled octreotate improve the rate of remission of endocrine gastroenteropancreatic tumors?. Nat Clin Pract Endocrinol Metab 2005; 1: 20–21
  • Esser J P, Krenning E P, Teunissen J J, Kooij P P, van Gameren A L, Bakker W H, Kwekkeboom D J. Comparison of [177Lu-DOTA0, Tyr3]octreotate and [177Lu-DOTA0, Tyr3]octreotide: Which peptide is preferable for PRRT?. Eur J Nucl Med Mol Imag 2006; 33: 1346–1351
  • Boerman O C, Oyen W J, Corstens F H. Between the Scylla and Charybdis of peptide radionuclide therapy: Hitting the tumor and saving the kidney. Eur J Nucl Med 2001; 28: 1447–1449
  • Behr T M, Goldenberg D M, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: Present status, future prospects and limitations. Eur J Nucl Med 1998; 25: 201–212
  • Eberle A N. The Melanotropins: Chemistry, Physiology and Mechanisms of Action. Karger, Basel 1988; 1–556
  • Eberle A N. Proopiomelanocortin and the melanocortin peptides. The Melanocortin Receptors, R D Cone. Humana Press, Totowa, NJ 2000; 3–67
  • Eberle A N, Froidevaux S, Siegrist W. Melanocortins and melanoma. The Melanocortin Receptors, R D Cone. Humana Press, Totowa, NJ 2000; 491–520
  • Eves P C. MacNeil S Haycock J W. α-Melanocyte-stimulating hormone, inflammation and human melanoma. Peptides 2006; 27: 444–452
  • Abdel-Malek Z, Scott M C, Suzuki I, Tada A, Im S, Lamoreux L, Ito S, Barsh G, Hearing V J. The melanocortin-1 receptor is a key regulator of human cutaneous pigmentation. Pigment Cell Res 2000; 13: 156–162, (Suppl 8)
  • Hadley M E, Sharma S D, Hruby V J, Levine N, Dorr R T. Melanotropic peptides for therapeutic and cosmetic tanning of the skin. Ann N Y Acad Sci 1993; 680: 424–439
  • Dorr R T, Ertl G, Levine N, Brooks C, Bangert J L, Powell M B, Humphrey S, Alberts D S. Effects of a superpotent melanotropic peptide in combination with solar UV radiation on tanning of the skin in human volunteers. Arch Dematol 2004; 140: 827–835
  • De Luca M, Siegrist W, Bondanza S, Mathor M, Cancedda R, Eberle A N. α-Melanocyte stimulating hormone (α-MSH) stimulates normal human melanocyte growth by binding to high-affinity receptors. J Cell Sci 1993; 105: 1079–1084
  • Siegrist W, Solca F, Stutz S, Giuffrè L, Carrel S, Girard J, Eberle A N. Characterization of receptors for α-melanocyte-stimulating hormone on human melanoma cells. Cancer Res 1989; 49: 6352–6358
  • Ghanem G E, Comunale G, Libert A, Vercammen-Grandjean A, Lejeune F J. Evidence for α-melanocyte-stimulating hormone (α-MSH) receptors on human malignant melanoma cells. Int J Cancer 1988; 41: 248–255
  • Siegrist W, Stutz S, Eberle A N. Homologous and heterologous regulation of α-melanocyte-stimulating hormone receptors in human and mouse melanoma cell lines. Cancer Res 1994; 54: 2604–2610
  • Bagutti C, Oestreicher M, Siegrist W, Oberholzer M, Eberle A N. α-MSH receptor autoradiography on mouse and human melanoma tissue sections and biopsies. J Recept Signal Transduct Res 1995; 15: 427–442
  • Jiang J, Sharma S D, Fink J L, Hadley M E, Hruby V J. Melanotropic peptide receptors: membrane markers of human melanoma cells. Exp Dermatol 1996; 5: 325–333
  • Salazar-Onfray F, Lopez M, Lundqvist A, Aguirre A, Escobar A, Serrano A, Korenblit C, Petersson M, Chhajlani V, Larsson O, Kiessling R. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker. Br J Cancer 2002; 87: 414–422
  • Bagutti C, Stolz B, Albert R, Bruns C, Pless J, Eberle A N. [111In]-DTPA-labeled analogues of α-MSH for the detection of MSH receptors in vitro and in vivo. Ann N Y Acad Sci 1993; 680: 445–447
  • Bagutti C, Stolz B, Albert R, Bruns C, Pless J, Eberle A N. [111In]-DTPA-labeled analogues of α-melanocyte-stimulating hormone for melanoma targeting: Receptor binding in vitro and in vivo. Int J Cancer 1994; 58: 749–755
  • Froidevaux S, Calame-Christe M, Tanner H, Sumanovski L, Eberle A N. A novel DOTA-a-melanocyte-stimulating hormone analog for metastatic melanoma diagnosis. J Nucl Med 2002; 43: 1699–1706
  • Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, Eberle A N. A gallium-labeled DOTA-α-melanocyte-stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 2004; 45: 116–123
  • Eberle A N, Froidevaux S. Radiolabeled α-melanocyte-stimulating hormone analogs for receptor-mediated targeting of melanoma: From tritium to indium. J Mol Recognit 2003; 16: 248–254
  • Chen J, Cheng Z, Owen N K, Hoffman T J, Miso Y, Jurisson S S, Quinn T P. Evaluation of an 111In-DOTA-rhenium cyclized α-MSH analog: A novel cyclic-peptide analog with improved tumor-targeting properties. J Nucl Med 2001; 42: 1847–1855
  • Cheng Z, Chen J, Miao Y, Owen N K, Quinn T P, Jurisson S S. Modification of the structure of a metallopeptide: synthesis and biological evaluation of 111In-labeled DOTA-conjugated rhenium-cyclized α-MSH analogues. J Med Chem 2002; 45: 3048–3056
  • Miao Y, Owen N K, Whitener D, Gallazzi F, Hoffman T J, Quinn T P. In vivo evaluation of 188Re-labeled α-melanocyte stimulating hormone peptide analogs for melanoma therapy. Int J Cancer 2002; 101: 480–487
  • Cheng Z, Chen J, Quinn T P, Jurisson S S. Radioiodination of rhenium cyclized α-melanocyte stimulating hormone resulting in enhanced radioactivity localization and retention in melanoma. Cancer Res 2004; 64: 1411–1418
  • Miao Y, Hoffman T J, Quinn T P. Tumor targeting properties of 90Y and 177Lu labeled α-melanocyte stimulating hormone peptide analogues in a murine melanoma model. Nucl Med Biol 2005; 32: 485–493
  • Miao Y, Fisher D R, Quinn T P. Reducing renal uptake of 90Y and 177Lu labeled α-melanocyte stimulating hormone peptide analogues. Nucl Med Biol 2006; 33: 723–733
  • Wei L, Butcher C, Miao Y, Gallazzi F, Quinn T P, Welch M J, Lewis J S. Synthesis and biological evaluation of Cu-64 labeled rhenium-cyclized α-MSH peptide analog using a cross-bridged cyclam chelator. J Nucl Med 2007; 48: 64–72
  • Cheng Z, Zhang L, Graves E, Xiong Z, Dandekar M, Chen X, Gambhir S S. Small-animal P ET of melanocortin 1 receptor expression using a 18F-labeled α-melanocyte-stimulating hormone analog. J Nucl Med 2007; 48: 987–994
  • Cheng Z, Xiong Z, Subbarayan M, Chen X, Gambhir S S. 64Cu-labeled α-melanocyte-stimulating hormone analog for microPET imaging of melanocortin-1 receptor expression. Bioconjug Chem 2007; 18: 765–772
  • Froidevaux S, Calame-Christe M, Tanner H, Eberle A N. Melanoma targeting with DOTA-α-melanocyte-stimulating hormone analogs: Structural parameters affecting tumor uptake nd kidney uptake. J Nucl Med 2005; 46: 887–895
  • Sawyer T K, Sanfilippo P J, Hruby V J, Engel M H, Heward C B, Burnett J B, Hadley M E. 4-Norleucine, 7-D-phenylalanine-α-melanocyte-stimulating hormone: A highly potent α-melanotropin with ultralong biological activity. Proc Natl Acad Sci USA 1980; 77: 5754–5758
  • Eberle A N. The Melanotropins: Chemistry, Physiology and Mechanisms of Action. Karger, Basel 1988; 344–345
  • Al-Obeidi F, Hruby V J, Hadley M E, Sawyer T K, Castrucci A M. Design, synthesis, and biological activities of a potent and selective α-melanotropin antagonist. Int J Pept Protein Res 1990; 35: 228–234
  • Muceniece R, Mutule I, Mutulis F, Prusis P, Szardenings M, Wikberg J E. Detection of regions in the MC1 receptor of importance for the selectivity of the MC1 receptor super-selective MS04/MS05 peptides. Biochim Biophys Acta 2001; 1544: 278–282
  • Sawyer T K, Hruby V J, Darman P S, Hadley M E. 4-Norleucine, 7-D-phenylalanine-α-melanocyte-stimulating hormone: A highly potent α-melanotropin with ultralong biological activity. Proc Natl Acad Sci USA 1980; 77: 5754–5758
  • Hadley M E, Hruby V J, Blanchard J, Dorr R T, Levine N, Dawson B V, Al-Obeidi F, Sawyer T K. Discovery and development of novel melanogenic drugs. Melanotan-I and II. Pharm Biotechnol 1998; 11: 575–595
  • Giblin M F, Jurisson S S, Quinn T P. Synthesis and characterization of rhenium-complexed α-melanotropin analogs. Bioconjug Chem 1997; 8: 347–353
  • Giblin M F, Wang N, Hoffman T J, Jurisson S S, Quinn T P. Design and characterization of α-melanotropin petpide analogs cyclized through rhenium and technetium metal coordination. Proc Natl Acad Sci U SA 1998; 95: 12814–12818
  • Eberle A N, Kriwaczek V M, Schwyzer R. Hormone-receptor interactions: Melanotropin activities of covalent serum albumin complexes with α-melanotropin, α-melanotropin fragments and enkephalin. FEBS Lett 1977; 80: 246–250
  • Eberle A N, Kriwaczek V M, Schwyzer R. Studies on tyrosinase stimulation, binding and degradation of α-MSH interacting with non-synchronized mouse melanoma cells in culture. Peptides, Structure and Biological Function, E Gross, J Meienhofer. Pierce Chemical Corp, Rockford, IL 1979; 1033–1036
  • Kriwaczek V M, Eberle A N, Müller M, Schwyzer R. Tobacco mosaic virus as a carrier for small molecules. I. The preparation and characterization of a TMV/α-melanotropin conjugate. Helv Chim Acta 1978; 61: 1232–1240
  • Eberle A N. Studies on melanotropin (MSH) receptors of melanophores and melanoma cells. Biochem Soc Trans 1981; 129: 113–116
  • Feuilloley M, Stolz M B, Delarue C. Fauchère J-L, Vaudry H. Structure-activity relationships of monomeric and dimeric synthetic ACTH fragments in perifused frog adrenal slices. J Steroid Biochem 1990; 35: 583–592
  • Vagner J, Handl H L, Gillies R J, Hruby V J. Novel targeting strategy based on multimeric ligands for drug delivery and molecular imaging: homooligomers of α-MSH. Bioorg Med Chem Lett 2004; 14: 211–215
  • Atherton E, Sheppard R C. Solid Phase Synthesis: a Practical Approach. IRL Press, Oxford 1989
  • Fidler I J. Selection of successive tumour lines for metastasis. Nat New Biol 1973; 242: 148–149
  • Froidevaux S, Eberle A N. Homologous regulation of melanocortin-1 receptor (MC1R) expression in melanoma tumor cells in vivo. J Recept Signal Transduct Res 2002; 22: 111–121
  • Siegrist W, Eberle A N. In situ melanin assay for MSH using mouse B16 melanoma cells in culture. Anal Biochem 1986; 159: 191–197
  • McQuade P, Miao Y, Yoo J, Quinn T P, Welch M J, Lewis J S. Imaging of melanoma using 64Cu and 86Y-DOTA-ReCCMSH(Arg11), a cyclized peptide analogue of α-MSH. J Med Chem 2005; 48: 2985–2992
  • Miao Y, Benwell K, Quinn T P. 99mTc and 111In labeled α-melanocyte stimulating hormone peptides as imaging probes for primary and pulmonary metastatic melanoma detection. J Nucl Med 2007; 48: 73–80
  • Miao Y, Owen N K, Hoffman T J, Quinn T P. Therapeutic efficacy of a 188Re labeled α-melanocyte stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J Nucl Med 2005; 46: 121–129
  • Miao Y, Hylarides M, Fisher D R, Shelton T, Moore H, Wester D, WFritzberg A R, Winkelmann C, THoffman T J, Quinn T P. Melanoma therapy via peptide-targeted α-radiation. Clin Cancer Res 2005; 11: 5616–5621
  • Handl H L, Vagner J, Han H, Mash E, Hruby V J, Gillies R J. Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets 2004; 8: 565–586
  • Yang H, Weiyuan J K. Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polymer Edn 2006; 17: 3–19
  • Svenson S, Tomalia D A. Dendrimers in biomedical applications—Reflections on the field. Adv Drug Delivery Rev 2005; 57: 2106–2129
  • Sadler K, Tam J P. Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 2002; 90: 195–229

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.