37
Views
14
CrossRef citations to date
0
Altmetric
Mini Review

Unifying Electrostatic Mechanism for Metal Cations in Receptors and Cell Signaling

Pages 153-161 | Published online: 10 Oct 2008

REFERENCES

  • Kovacic P, Pozos R S. Bioelectronome. Integrated approach to receptor chemistry, radicals, electrochemistry, cell signaling and physiological effects based on electron transfer. J Recept Signal Transduct 2007; 27: 261–294
  • Kovacic P, Pozos R S, Daskovich C D. Unifying electrostatic mechanism for receptor-ligand activity. 2007; 27: 411–432
  • Kovacic P, Draskovich C D, Pozos R S. Unifying electrostatic mechanism for phosphates and sulfates in cell signaling. 2007; 27: 433–443
  • Ishikita H, Knapp E W. Electrostatic role of the photosynthetic reaction center. FEBS Lett 2006; 580: 4567–4570
  • Kirmaier C, Holten D, Debus R J, Feher G, Okamura M Y. Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 1986; 83: 6407–6411
  • Volodina L A, Baider L M, Shapiro A B, Burlaev D S. Changes in the electrical characteristics of the internal surface of cytoplasmic membrane of bacteria Escherichia coli after the binding of microdoses of copper ions by its external surface. Biophysika 2006; 51: 92–96
  • Yang B, Tian L, Zhang H, Zhang W, Xu H, Xie Z, Lu P, Zhang M, Yu J, Lu D, Ma Y, Shen J. Nature of zinc (II)-induced ionochromic effect of bipyridine-containing conjugated polymers: An electrostatic interaction mechanism. J Phys Chem B 2006; 110: 16846–16851
  • McLaughlin A, Eng W K, Vaio G, Wilson T, McLaughlin S. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes. J Membr Biol 1983; 76: 183–193
  • Fukuta H, Kito Y, Suzuki H. Spontaneous electrical activity and associated changes in calcium concentration in guinea-pig gastric smooth muscle. J Physiol 2002; 540: 249–260
  • Tempia F, Alojado M E, Strata P, Knopfel T. Characterization of the mGluR(1)-mediated electrical and calcium signaling in Purkinje cell mouse cerebellar slices. J Neurophysiol 2001; 86: 1389–1397
  • Gonzalez-Iglesias A E, Jiang Y, Tomic M, Kretschmannova K, Andric S A, Zemkova H, Stojilkovic S S. Dependence of electrical activity and calcium influx-controlled prolactin release on adenylyl cyclase signaling pathway in pituitary lactotrophs. Mol Endocrinol 2006; 20: 2231–2246
  • Micheletti M, Brioschi A, Fesce R, Grohovaz F. A novel pattern of fast calcium oscillations points to calcium and electrical activity cross-talk in rat chromaffin cells. Cell Mol Life Sci 2005; 62: 95–104
  • Beharier O, Etzion Y, Katz A, Freidman H, Tenbosh N, Zacharish S, Bereza S, Goshen U, Moran A. Crosstalk between L-type calcium channels and ZnT-1, a new player in rate-dependent cardiac electrical remodeling. Cell Calcium 2007; 42: 71–82
  • Kovacic P, Kiser P F, Reger D L, Huff M F, Feinberg B A. Electrochemistry of Cu (I) bipyridyl complexes with alkene, alkyne, and nitrile ligands. Implications for plant hormone action of ethylene. Free Rad Res Comm 1991; 15: 143–149
  • Leshem Y. The Molecular and Hormonal Basis of Plant-Growth Regulation. Springer-Verlag, New York 1973; 143
  • Carri M T, Ferri A, Casciati A, Celsi F, Ciriolo M R, Rotilio G. Copper-dependent oxidative stress, alteration of signal transduction and neurodegeneration in amyotrophic lateral sclerosis. Funct Neurol 2001; 16: 181–188
  • Hidalgo E, Ding H, Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 1997; 22: 207–210
  • Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR tr4anscription activator. Proc Natl Acad Sci U SA 2000; 97: 5146–5150
  • Vasilieva S V, Moshkovskaya E Y, Sanina N A, Aldoshin S M, Vanin A F. Genetic signal transduction by nitrosyl-iron complexes in Escherichia coli. Biochemistry (Mosc) 2004; 69: 883–889
  • Wolle D, Dean D R, Howard J B. Nucleotide-iron-sulfur cluster signal transduction in the nitrogenase iron-protein: the role of Asp125. Science 1992; 258: 992–995
  • Kageyama C, Kato K, Iyozumi H, Inagaki H, Yamaguchi A, Furuse K, Baba K. Photon emissions from rice cells elicited by N-acetylchitooligosaccharide are generated through phospholipids signaling in close association with the production of reactive oxygen species. Plant Physiol Biochem 2006; 44: 901–909
  • Kovacic P, Pozos R S. Cell signaling (mechanism and reproductive toxicity): Redox chains, radicals, electrons, relays, conduit, electrochemistry and other medical implication. Birth Defects Res Part C 2006; 78: 333–344
  • Iida T, Yoshiki Y, Someya S, Okubo K. Generation of reactive oxygen species and photon emission from a browned product. Biosci Biotechnol Biochem 2002; 66: 1641–1645
  • Voeikov V. Reactive oxygen species, water, photons and life. Riv Biol 2001; 94: 237–258
  • Oteiza P I, Mackenzie G G. Zinc, oxidant-triggered cell signaling, and human health. Mol Aspects Med 2005; 26: 245–255
  • Simonovic M, Dolmer K, Huang W, Strickland D K, Volz K, Gettins P G. Calcium coordination and pH dependence of the calcium affinity of ligand-binding repeat CR7 from the LRP. Comparison with related domains from the LRP and the LDL receptor. Biochemistry 2001; 40: 15127–15134
  • Bieri S, Atkins A R, Lee H T, Winzor D J, Smith R, Kroon P A. Folding, calcium binding, and structural characterization of a concatemer of the first and second ligand-binding modules of the low-density lipoprotein receptor. Biochemistry 1998; 37: 10994–111002
  • Atkins A R, Brereton I M, Kroon P A, Lee H T, Smith R. Calcium is essential for the structural integrity of the cysteine-rich, ligand-binding repeat of the low-density lipoprotein receptor. Biochemistry 1998; 37: 1662–1670
  • Nastuk M A, Lieth E, Ma J Y, Cardasis C A, Moynihan E B, McKechnie B A, Fallon J R. The putative agrin receptor binds ligand in calcium-dependent manner and aggregates during agrin-induced acetylcholine receptor clustering. Neuron 1991; 7: 807–818
  • Rand M D, Lindblom A, Carlson J, Villoutreix B O, Stenflo J. Calcium binding to tandem repeats of EGF-like modules. Expression and characterization of the EGF-like modules of human Notch-1 implicated in receptor-ligand interactions. Protein Sci 1997; 6: 2059–2071
  • Moestrup S K, Kaltoft K, Sottrup-Jensen L, Gliemann J. The human alpha 2-macroglobulin receptor contains high affinity calcium binding sites important for receptor conformation and ligand recognition. J Biol Chem 1990; 265: 12623–12628
  • D'Souza S E, Ginsberg M H, Burke T A, Plow E F. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its alpha subunit. J Biol Chem 1990; 265: 3440–3446
  • Gomperts B D, Tatham P ER, Kramer I M. Signal Transduction. Academic Press, New York 2002; 25: 173–182
  • Fujita T. Homeostasis and magnesium—Comparison with calcium. Clin Calcium 2005; 15: 23–28
  • Haase H, Rink L. Signal transduction in monocytes: the role of zinc ions. Biometals 2007; 20: 579–585
  • Ostrakhovitch E A, Cherian M G. Differential regulation of signal transduction pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc. Arch Biochem Biophys 2004; 423: 351–361
  • Taylor C G, Giesbrecht J A. Dietary zinc deficiency and expression of T lymphocyte signal transduction proteins. Can J Physiol Pharmacol 2000; 78: 823–828
  • Lepage L M, Giesbrecht J A, Taylor C G. Expression of T lymphocyte p56(lck), a zinc-finger signal transduction protein, is elevated by dietary zinc deficiency and diet restriction in mice. J Nutr 1999; 129: 620–627
  • Csermely P, Somogyl J. Zinc as a possible mediator of signal transduction in T lymphocytes. Acta Physiol Hung 1989; 74: 195–199
  • Panitz F, Krain B, Hollemann T, Nordheim A, Pieler T. The Spemann organizer-expressed zinc finger gene Xegr-1 responds to the MAP kinases/Ets-SRF signal transduction pathway. EMBO J 1998; 17: 4414–4425
  • Anonymous. Importance of zinc for hormone binding and signal transduction: Limiting mechanisms in zinc deficiency?. Nutr Rev 1991; 49: 369–370
  • Apostolova M D, Ivanova I A, Cherian M G. Signal transduction pathways, and nuclear translocation of zinc and metallothionein during differentiation of myoblasts. Biochem Cell Biol 2000; 78: 27–37
  • Canesi L, Betti M, Ciacci C, Gallo G. Insulin-like effect of zinc in mytilus digestive gland cells: Modulation of tyrosine kinase-mediated cell signaling. Gen Comp Endocrinol 2001; 122: 60–66
  • Wolff C, Roy S, Lewis K E, Schauerte H, Joerg-Rauch G, Kirn A, Weiler C, Geisler R, Haffter P, Ingham P W. Iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. Genes Dev 2004; 18: 1565–1576
  • Merten K E, Jiang Y, Kang Y J. Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells. Exp Biol Med 2007; 232: 682–689
  • Wosten M M, Kox L F, Chamnongpol S, Soncini F C, Groisman E A. A signal transduction system that responds to extracellular iron. Cell 2000; 103: 113–125
  • Anderson G J, Frazer D M. Iron metabolism meets signal transduction. Nat Genet 2006; 38: 503–504
  • Johnson W T. Copper and signal transduction: Platelets as a model to determine the role of copper in stimulus-response coupling. Biofactors 1999; 10: 53–59
  • Ostrakhovitch E A, Cherian M G. Differentail regulation of signal transduction pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc. Arch Biochem Biophys 2004; 423: 351–361
  • Quinn J M, Eriksson M, Moseley J L, Merchant S. Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant Physiol 2002; 128: 463–471
  • Hamilton G L, Kang E J, Mba M, Toste F D. A powerful chiral counterion strategy for asymetric transition metal catalysis. Science 2007; 317: 496–499
  • Arnaud C. Weak forces. Chem Engin News 2007; 85: 12
  • Hohng S, Zhou R, Nahas M K, Yu J, Schulten K, Lilley D MG, Ha T. Fluorescence-force spectroscopy maps two dimensional reaction landscape of the Holliday junction. Science 2007; 38: 279–283

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.