391
Views
13
CrossRef citations to date
0
Altmetric
Review Article

Cellular and molecular mechanisms of acute exposure to sulfur mustard: a systematic review

, , &
Pages 200-216 | Received 18 Nov 2015, Accepted 10 Jul 2016, Published online: 02 Aug 2016

References

  • Yazdani S, Karimfar MH, Imani Fooladi AA, et al. Nuclear factor κB1/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard. J Recept Signal Transduct Res 2011;31:367–73.
  • Tang FR, Loke WK. Sulfur mustard and respiratory diseases: revisit with special reference to the “Comments on 'Sulfur Mustard and Respiratory Diseases', Tang and Loke (2012) and a prepared integrated mechanism for chronic pulmonary disease from exposure to sulfur mustard” by Saburi and Ghanei (2013). Crit Rev Toxicol 2013;43:277–81.
  • Kehe K, Thiermann H, Balszuweit F, et al. Acute effects of sulfur mustard injury: Munich experiences. Toxicology 2009;263:3–8.
  • Rancourt RC, Veress LA, Ahmad A, et al. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation. Toxicol Appl Pharmacol 2013;272:86–95.
  • Debouzy JC, Aous S, Dabouis V, et al. Phospholipid matrix as a target for sulfur mustard (HD): NMR study in model membrane systems. Cell Biol Toxicol 2002;18:397–408.
  • van der Schans GP, Noort D, Mars-Groenendijk RH, et al. Immunochemical detection of sulfur mustard adducts with keratins in the stratum corneum of human skin. Chem Res Toxicol 2001;15:21–5.
  • Mol MAE, van den Berg RM, Benschop HP. Proteomic assessment of sulfur mustard-induced protein adducts and other protein modifications in human epidermal keratinocytes. Toxicol Appl Pharmacol 2008;230:97–108.
  • McNutt P, Lyman M, Swartz A, et al. Architectural and biochemical expressions of mustard gas keratopathy: preclinical indicators and pathogenic mechanisms. PLoS One 2012;7:e42837.
  • Kehe K, Szinicz L. Medical aspects of sulphur mustard poisoning. Toxicology 2005;214:198–209.
  • Callaway S, Pearce KA. Protection against systemic poisoning by mustard gas, di(2-chloroethyl) sulphide, by sodium thiosulphate and thiocit in the albino rat. Br J Pharmacol Chemother 1958;13:395–8.
  • Chauhan RS, Murty LV. Effect of topically applied sulphur mustard on guinea pig liver. J Appl Toxicol 1997;17:415–19.
  • Elsayed NM, Omaye ST, Klain GJ, et al. Response of mouse brain to a single subcutaneous injection of the monofunctional sulfur mustard, butyl 2-chloroethyl sulfide (BCS)*. Toxicology 1989;58:11–20.
  • Gautam A, Gupta A, Lomash V, et al. Prophylactic efficacy of combination of DRDE-07 and its analogues with amifostine against sulphur mustard induced systemic toxicity. Indian J Exp Biol 2010;48:752–61.
  • Husain K, Dube SN, Sugendran K, et al. Effect of topically applied sulphur mustard on antioxidant enzymes in blood cells and body tissues of rats. J Appl Toxicol 1996;16:245–8.
  • Kim YB, Lee YS, Choi DS, et al. Change in glutathione S-transferase and glyceraldehyde-3-phosphate dehydrogenase activities in the organs of mice treated with 2-chloroethyl ethyl sulfide or its oxidation products. Food Chem Toxicol 1996;34:259–65.
  • Kumar P, Gautam A, Prakash CJ, et al. Ameliorative effect of DRDE 07 and its analogues on the systemic toxicity of sulphur mustard and nitrogen mustard in rabbit. Hum Exp Toxicol 2010;29:747–55.
  • Needham DM, Cohen JA, Barrett AM. The mechanism of damage to the bone marrow in systemic poisoning with mustard gas. Biochem J 1947;41:631–9.
  • Qui M, Paromov VM, Yang H, et al. Inhibition of inducible nitric oxide synthase by a mustard gas analog in murine macrophages. BMC Cell Biol 2006;7:39.
  • Vijayaraghavan R, Gautam A, Sharma M, et al. Comparative evaluation of some flavonoids and tocopherol acetate against the systemic toxicity induced by sulphur mustard. Indian J Pharmacol 2008;40:114–20.
  • Vijayaraghavan R, Sugendran K, Pant SC, et al. Dermal intoxication of mice with bis(2-chloroethyl)sulphide and the protective effect of flavonoids. Toxicology 1991;69:35–42.
  • Boskabady MH, Tabatabayee A, Amiri S, Vahedi N. The effect of vitamin E on pathological changes in kidney and liver of sulphur mustard-exposed guinea pigs. Toxicol Indus Health 2012;28:216–21.
  • Gholamnezhad Z, Boskabady MH, Amery S, et al. The effect of vitamin E on lung pathology in sulfur mustard-exposed guinea pigs. Toxicol Indus Health 2015. [Epub ahead of print]. doi: 10.1177/0748233715600986.
  • Papirmeister B. Medical defense against mustard gas: toxic mechanisms and pharmacological implications. Boca Raton, FL: CRC Press; 1991. 359 p.
  • Mishra NC, Rir-sima-ah J, Grotendorst GR, et al. Inhalation of sulfur mustard causes long-term T cell-dependent inflammation: possible role of Th17 cells in chronic lung pathology. Int Immunopharmacol 2012;13:101–8.
  • Boskabady MH, Attaran D, Shaffei MN. Airway responses to salbutamol after exposure to chemical warfare. Respirology 2008;13:288–93.
  • Mirsadraee M, Attaran D, Boskabady MH, Towhidi M. Airway hyperresponsiveness to methacholine in chemical warfare victims. Respiration 2005;72:523–8.
  • Lynch V, Smith H, Marshall E. On dichlorethylsulphide (Mustard Gas) I. The systemic effects and mechanism of action. J Pharmacol Exp Ther 1918;12:265–90.
  • Peters RA, Walker E. Rate of liberation of acid by betabeta'-Dichlorodiethyl sulphide and its analogues in its relation to the “theory of skin vesication” theory of skin. Biochem J 1923;17:260–76.
  • Roberts JJ, Warwick GP. Studies of the mode of action of alkylating agents. vi. the metabolism of bis-2-chloroethylsulphide (mustard gas) and related compounds. Biochem Pharmacol 1963;12:1329–34.
  • Kehe K, Balszuweit F, Steinritz D, Thiermann H. Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology 2009;263:12–19.
  • Laskin JD, Black AT, Jan YH, et al. Oxidants and antioxidants in sulfur mustard-induced injury. Ann NY Acad Sci 2010;1203:92–100.
  • Korkmaz A, Yaren H, Topal T, Oter S. Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation. Arch Toxicol 2006;80:662–70.
  • Niu T, Matijasevic Z, Austin-Ritchie P, et al. A 32P-postlabeling method for the detection of adducts in the DNA of human fibroblasts exposed to sulfur mustard. Chemico-Biol Interact 1996;100:77–84.
  • Ludlum DB, Kent S, Mehta JR. Formation of O6-ethylthioethylguanine in DNA by reaction with the sulfur mustard, chloroethyl sulfide, and its apparent lack of repair by O6-alkylguanine-DNA alkyltransferase. Carcinogenesis 1986;7:1203–6.
  • Jowsey PA, Williams FM, Blain PG. DNA damage responses in cells exposed to sulphur mustard. Toxicol Lett 2012;209:1–10.
  • Lodhi IJ, Sweeney JF, Clift RE, Hinshaw DB. Nuclear dependence of sulfur mustard-mediated cell death. Toxicol Appl Pharmacol 2001;170:69–77.
  • Brookes P, Lawley PD. The reaction of mustard gas with nucleic acids in vitro and in vivo. Biochem J 1960;77:478–84.
  • Shahin S, Cullinane C, Gray PJ. Mitochondrial and nuclear DNA damage induced by sulphur mustard in keratinocytes. Chemico-Biol Interact 2001;138:231–45.
  • Debiak M, Kehe K, Burkle A. Role of poly(ADP-ribose) polymerase in sulfur mustard toxicity. Toxicology 2009;263:20–5.
  • Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–12.
  • Kehe K, Raithel K, Kreppel H, et al. Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in HaCaT cells. Arch Toxicol 2008;82:461–70.
  • Nguewa PA, Fuertes MA, Alonso C, Perez JM. Pharmacological modulation of Poly(ADP-ribose) polymerase-mediated cell death: exploitation in cancer chemotherapy. Mol Pharm 2003;64:1007–14.
  • Chiarugi A, Moskowitz MA. Cell biology. PARP-1-a perpetrator of apoptotic cell death? Science 2002;297:200–1.
  • Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012;26:417–32.
  • Martinez-Romero R, Canuelo A, Siles E, et al. Nitric oxide modulates hypoxia-inducible factor-1 and poly(ADP-ribose) polymerase-1 cross talk in response to hypobaric hypoxia. J Appl Physiol 2012;112:816–23.
  • Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006;12:440–50.
  • Vaughan FL, Zaman S, Scavarelli R, Bernstein IA. Macromolecular metabolism of a differentiated rat keratinocyte culture system following exposure to sulfur mustard. J Toxicol Environ Health 1988;23:507–18.
  • Watson AP, Griffin GD. Toxicity of vesicant agents scheduled for destruction by the chemical stockpile disposal program. Environ Health Perspect 1992;98:259–80.
  • Rabbani A, Khodabandeh M. Studies on the binding of the alkylating agent sulfur mustard to calf thymus chromatin. Medical J IRAN 1993;7:43–46.
  • Byrne MP, Broomfield CA, Stites WE. Mustard gas crosslinking of proteins through preferential alkylation of cysteines. J Protein Chem 1996;15:131–6.
  • Potter AL. The successful treatment of two recent cases of cyanide poisoning. Br J Ind Med. 1950;7:125–30.
  • Fariss MW, Reed DJ. Mechanism of chemical-induced toxicity. II. Role of extracellular calcium. Toxicol Appl Pharmacol. 1985;79:296–306.
  • Orrenius S, Nicotera P. On the role of calcium in chemical toxicity. Arch Toxicol Suppl 1987;11:11–19.
  • Ghabili K, Agutter PS, Ghanei M, et al. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Critical Rev Toxicol 2011;41:384–403.
  • Malaviya R, Sunil VR, Cervelli J, et al. Inflammatory effects of inhaled sulfur mustard in rat lung. Toxicol Appl Pharmacol 2010;248:89–99.
  • Groff WA Sr, Kaminskis A, Cucinell SA. Simultaneous determination of methemoglobin and total hemoglobin by a continuous-flow method. Clin Chem 1974;20:1116–20.
  • Way JL. Cyanide intoxication and its mechanism of antagonism. Annu Rev Pharmacol Toxicol 1984;24:451–81.
  • Chen KK, Rose CL. Nitrite and thiosulfate therapy in cyanide poisoning. J Am Med Assoc. 1952;149:113–9.
  • Paromov V, Suntres Z, Smith M, Stone WL. Sulfur mustard toxicity following dermal exposure: role of oxidative stress, and antioxidant therapy. J Burns Wounds 2007;7:e7.
  • Pant SC, Vijayaraghavan R, Kannan GM, Ganesan K. Sulphur mustard induced oxidative stress and its prevention by sodium 2,3-dimercapto propane sulphonic acid (DMPS) in mice. Biomed Environ Sci 2000;13:225–32.
  • Dayton PG, Sicam LE, Landrau M, Burns JJ. Metabolism of bis-/3-chloroethyl sulfide (sulfur mustard gas). Biochem Pharmacol 1961;7:65–74.
  • Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147:227–35.
  • Sacca R, Cuff CA, Ruddle NH. Mediators of inflammation. Curr Opin Immunol. 1997;9:851–7.
  • Di Stefano A, Caramori G, Ricciardolo FL, et al. Cellular and molecular mechanisms in chronic obstructive pulmonary disease: an overview. Clin Exp Allergy 2004;34:1156–67.
  • Kim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 2010;11:577–84.
  • Pohanka M. Antioxidants countermeasures against sulfur mustard. Mini Rev Med Chem 2012;12:742–8.
  • Smith RE, Strieter RM, Phan SH, et al. TNF and IL-6 mediate MIP-1alpha expression in bleomycin-induced lung injury. J Leukoc Biol 1998;64:528–36.
  • Weinberger B, Laskin JD, Sunil VR, et al. Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity. Pulm Pharmacol Ther 2011;24:92–9.
  • Sunil VR, Patel-Vayas K, Shen J, et al. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2011;250:245–55.
  • Sunil VR, Patel KJ, Mainelis G, et al. Pulmonary effects of inhaled diesel exhaust in aged mice. Toxicol Appl Pharmacol 2009;241:283–93.
  • Calvet JH, Gascard JP, Delamanche S, Brink C. Airway epithelial damage and release of inflammatory mediators in human lung parenchyma after sulfur mustard exposure. Hum Exp Toxicol 1999;18:77–81.
  • Guignabert C, Taysse L, Calvet JH, et al. Effect of doxycycline on sulfur mustard-induced respiratory lesions in guinea pigs. Am J Physiol Lung Cell Mol Physiol 2005;289:L67–74.
  • Chang YC, Wang JD, Svoboda KK, et al. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model. Toxicol Appl Pharmacol 2013;268:178–87.
  • Suwara MI, Green NJ, Borthwick LA, et al. IL-1α released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol 2014;7:684–93.
  • Gasse P, Riteau N, Charron S, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 2009;179:903–13.
  • Levitt JM, Lodhi IJ, Nguyen PK, et al. Low-dose sulfur mustard primes oxidative function and induces apoptosis in human polymorphonuclear leukocytes. Int Immunopharmacol 2003;3:747–56.
  • Rainger GE, Rowley AF, Nash GB. Adhesion-dependent release of elastase from human neutrophils in a novel, flow-based model: specificity of different chemotactic agents. Blood 1998;92:4819–27.
  • Knowles H, Li Y, Perraud AL. The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 2013;55:241–8.
  • Chen SJ, Zhang W, Tong Q, et al. Role of TRPM2 in cell proliferation and susceptibility to oxidative stress. Am J Physiol Cell Physiol 2013;304:C548–60.
  • Zhang Z, Zhang W, Jung DY, et al. TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 2012;302:E807–16.
  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68:320–44.
  • Ham HY, Hong CW, Lee SN, et al. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling. Toxicol Appl Pharmacol 2012;258:82–8.
  • Elsea CR, Roberts DA, Druker BJ, Wood LJ. Inhibition of p38 MAPK suppresses inflammatory cytokine induction by etoposide, 5-fluorouracil, and doxorubicin without affecting tumoricidal activity. PLoS One 2008;3:e2355.
  • Wormser U, Brodsky B, Proscura E, et al. Involvement of tumor necrosis factor-alpha in sulfur mustard-induced skin lesion; effect of topical iodine. Arch Toxicol 2005;79:660–70.
  • McClintock SD, Till GO, Smith MG, Ward PA. Protection from half-mustard-gas-induced acute lung injury in the rat. J Appl Toxicol 2002;22:257–62.
  • Kumar RK, Herbert C, Thomas PS, et al. Inhibition of inflammation and remodeling by roflumilast and dexamethasone in murine chronic asthma. J Pharmacol Exp Ther 2003;307:349–55.
  • Dillman JF, 3rd, McGary KL, Schlager JJ. An inhibitor of p38 MAP kinase downregulates cytokine release induced by sulfur mustard exposure in human epidermal keratinocytes. Toxicol in Vitro 2004;18:593–9.
  • Cassatella MA. The production of cytokines by polymorphonuclear neutrophils. Immunol Today 1995;16:21–6.
  • Morishima Y, Nomura A, Uchida Y, et al. Triggering the induction of myofibroblast and fibrogenesis by airway epithelial shedding. Am J Respir Cell Mol Biol 2001;24:1–11.
  • Anderson DR, Taylor SL, Fetterer DP, Holmes WW. Evaluation of protease inhibitors and an antioxidant for treatment of sulfur mustard-induced toxic lung injury. Toxicology 2009;263:41–6.
  • Shibata K, Yamada H, Hara H, et al. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 2007;178:4466–72.
  • Shainheit MG, Smith PM, Bazzone LE, et al. Dendritic cell IL-23 and IL-1 production in response to schistosome eggs induces Th17 cells in a mouse strain prone to severe immunopathology. J Immunol 2008;181:8559–67.
  • Gasse P, Riteau N, Vacher R, et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One 2011;6:e23185.
  • Boskabady MH, Vahedi N, Amery S, Khakzad MR. The effect of Nigella sativa alone, and in combination with dexamethasone, on tracheal muscle responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. J Ethnopharmacol 2011;137:1028–34.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.
  • Sies H. Oxidative stress: from basic research to clinical application. Am J Med 1991;91:31S–8S.
  • Carter AB, Monick MM, Hunninghake GW. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol 1999;20:751–8.
  • Higuchi Y. Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 2004;8:455–64.
  • Shohrati M, Aslani J, Eshraghi M, et al. Therapeutics effect of N-acetyl cysteine on mustard gas exposed patients: evaluating clinical aspect in patients with impaired pulmonary function test. Respir Med 2008;102:443–8.
  • Ghanei M, Shohrati M, Jafari M, et al. N-acetylcysteine improves the clinical conditions of mustard gas-exposed patients with normal pulmonary function test. Basic Clin Pharmacol Toxicol 2008;103:428–32.
  • Boskabady MH, Amery S, Vahedi N, Khakzad MR. The effect of vitamin E on tracheal responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. Inhal Toxicol 2011;23:157–65.
  • Panahi Y, Davoudi SM, Sahebkar A, et al. Efficacy of aloe vera/olive oil cream versus betamethasone cream for chronic skin lesions following sulfur mustard exposure: a randomized double-blind clinical trial. Cutaneous Ocular Toxicol 2012;31:95–103.
  • Panahi Y, Sahebkar A, Amiri M, et al. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr 2011;1–8.
  • Dodson M, Darley-Usmar V, Zhang J. Cellular Metabolic and Autophagic Pathways: Traffic Control by Redox Signaling. Free Radic Biol Med 2013;63:207–21.
  • Sawyer TW. Characterization of the protective effects of L-nitroarginine methyl ester (L-NAME) against the toxicity of sulphur mustard in vitro. Toxicology 1998;131:21–32.
  • Sawyer TW. Modulation of sulfur mustard toxicity by arginine analogues and related nitric oxide synthase inhibitors in vitro. Toxicol Sci 1998;46:112–23.
  • Sawyer TW, Lundy PM, Weiss MT. Protective effect of an inhibitor of nitric oxide synthase on sulphur mustard toxicity in vitro. Toxicol Appl Pharmacol 1996;141:138–44.
  • Gao X, Ray R, Xiao Y, Ray P. Suppression of inducible nitric oxide synthase expression and nitric oxide production by macrolide antibiotics in sulfur mustard-exposed airway epithelial cells. Basic Clin Pharmacol Toxicol 2008;103:255–61.
  • Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 2002;383:401–9.
  • Reiter TA. NO* chemistry: a diversity of targets in the cell. Redox Rep 2006;11:194–206.
  • Szabo C. Poly(ADP-ribose) polymerase activation by reactive nitrogen species–relevance for the pathogenesis of inflammation. Nitric Oxide 2006;14:169–79.
  • Coppey LJ, Gellett JS, Davidson EP, et al. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001;50:1927–37.
  • Jafari M. Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology 2007;231:30–9.
  • Gould NS, White CW, Day BJ. A role for mitochondrial oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced lung cell injury and antioxidant protection. J Pharmacol Exp Ther 2009;328:732–9.
  • Sunil VR, Shen J, Patel-Vayas K, et al. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning. Toxicol Appl Pharmacol 2012;261:22–30.
  • Petrali JP, Oglesby SB, Meier HL. Ultrastructural correlates of the protection afforded by niacinamide against sulfur mustard-induced cytotoxicity of human lymphocytes in vitro. Ultrastruct Pathol 1990;14:253–62.
  • Smith WJ, Gross CL, Chan P, Meier HL. The use of human epidermal keratinocytes in culture as a model for studying the biochemical mechanisms of sulfur mustard toxicity. Cell Biol Toxicol 1990;6:285–91.
  • Ray R, Keyser B, Benton B, et al. Sulfur mustard induces apoptosis in cultured normal human airway epithelial cells: evidence of a dominant caspase-8-mediated pathway and differential cellular responses*. Drug Chem Toxicol 2008;31:137–48.
  • Brune B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ 2003;10:864–9.
  • Golstein P, Ojcius DM, Young JD. Cell death mechanisms and the immune system. Immunol Rev 1991;121:29–65.
  • Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 2006;129:1673–82.
  • Kumar S. Regulation of caspase activation in apoptosis: implications in pathogenesis and treatment of disease. Clin Exp Pharmacol Physiol 1999;26:295–303.
  • Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999;6:99–104.
  • Dabrowska MI, Becks LL, Lelli JJL, et al. Sulfur mustard induces apoptosis and necrosis in endothelial cells. Toxicol Appl Pharmacol 1996;141:568–83.
  • Rosenthal DS, Velena A, Chou F-P, et al. Expression of dominant-negative Fas-associated death domain blocks human keratinocyte apoptosis and vesication induced by sulfur mustard. J Biol Chem 2003;278:8531–40.
  • Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296:1634–5.
  • Sourdeval M, Lemaire C, Deniaud A, et al. Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis 2006;11:1545–59.
  • Eisenmenger W, Drasch G, von Clarmann M, et al. Clinical and morphological findings on mustard gas [bis(2-chloroethyl)sulfide] poisoning. J Forensic Sci 1991;36:1688–98.
  • Hofstra JJ, Vlaar AP, Knape P, et al. Pulmonary activation of coagulation and inhibition of fibrinolysis after burn injuries and inhalation trauma. J Trauma 2011;70:1389–97.
  • Veress LA, O'Neill HC, Hendry-Hofer TB, et al. Airway obstruction due to bronchial vascular injury after sulfur mustard analog inhalation. Am J Respir Critic Care Med 2010;182:1352–61.
  • Rancourt RC, Ahmad A, Veress LA, et al. Antifibrinolytic mechanisms in acute airway injury after sulfur mustard analog inhalation. Am J Respir Cell Mol Biol 2014;51:559–67.
  • Rancourt RC, Veress LA, Guo X, et al. Airway tissue factor-dependent coagulation activity in response to sulfur mustard analog 2-chloroethyl ethyl sulfide. Am J Physiol Lung Cell Mol Physiol 2012;302:L82–92.
  • Houin PR, Veress LA, Rancourt RC, et al. Intratracheal heparin improves plastic bronchitis due to sulfur mustard analog. Pediatr Pulmonol 2015;50:118–26.
  • Plow EF, Freaney DE, Plescia J, Miles LA. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol 1986;103:2411–20.
  • Redlitz A, Tan AK, Eaton DL, Plow EF. Plasma carboxypeptidases as regulators of the plasminogen system. J Clin Invest 1995;96:2534–8.
  • Ghanei M, Adibi I, Farhat F, Aslani J. Late respiratory effects of sulfur mustard: how is the early symptoms severity involved? Chronic Respir Dis 2008;5:95–100.
  • O'Neill HC, White CW, Veress LA, et al. Treatment with the catalytic metalloporphyrin AEOL 10150 reduces inflammation and oxidative stress due to inhalation of the sulfur mustard analog 2-chloroethyl ethyl sulfide. Free Radical Biol Med 2010;48:1188–96.
  • Mukhopadhyay S, Mukherjee S, Smith M, Das SK. Activation of MAPK/AP-1 signaling pathway in lung injury induced by 2-chloroethyl ethyl sulfide, a mustard gas analog. Toxicol Lett 2008;181:112–17.
  • Karacsonyi C, Lee JH, Shanmugam N, Kagan E. Epidermal growth factor receptor signaling mediates vesicant-induced airway epithelial secretion of interleukin-6 and production of mucin. Am J Respir Cell Mol Biol 2012;46:157–64.
  • Karacsonyi C, Shanmugam N, Kagan E. A clinically relevant in vitro model for evaluating the effects of aerosolized vesicants. Toxicol Lett 2009;185:38–44.
  • Seagrave J, Weber WM, Grotendorst GR. Sulfur mustard vapor effects on differentiated human lung cells. Inhal Toxicol 2010;22:896–902.
  • Gao X, Ray R, Xiao Y, et al. Inhibition of sulfur mustard-induced cytotoxicity and inflammation by the macrolide antibiotic roxithromycin in human respiratory epithelial cells. BMC Cell Biol 2007;8:17.
  • Emmler J, Hermanns MI, Steinritz D, et al. Assessment of alterations in barrier functionality and induction of proinflammatory and cytotoxic effects after sulfur mustard exposure of an in vitro coculture model of the human alveolo-capillary barrier. Inhal Toxicol 2007;19:657–65.
  • Paromov V, Qui M, Yang H, et al. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue. BMC Cell Biol 2008;9:33.
  • Jin X, Ray R, Leng Y, Ray P. Molecular determination of laminin-5 degradation: a biomarker for mustard gas exposure diagnosis and its mechanism of action. Exp Dermatol 2008;17:49–56.
  • Black AT, Joseph LB, Casillas RP, et al. Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010;245:352–60.
  • Adelipour M, Imani Fooladi AA, Yazdani S, et al. Smad molecules expression pattern in human bronchial airway induced by sulfur mustard. Iran J Allergy Asthma Immunol 2011;10:147–54.
  • Emad A, Emad Y. CD4/CD8 ratio and cytokine levels of the BAL fluid in patients with bronchiectasis caused by sulfur mustard gas inhalation. J Inflamm (Lond) 2007;4:2.
  • Mehrani H, Ghanei M, Aslani J, Golmanesh L. Bronchoalveolar lavage fluid proteomic patterns of sulfur mustard-exposed patients. Proteomics Clin Appl 2009;3:1191–200.
  • Nourani MR, Ebrahimi M, Roudkenar MH, et al. Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells. Int J Gen Med 2011;4:413–19.
  • Mirbagheri L, Habibi Roudkenar M, Ali Imani Fooladi A, Nourani MR. Down regulation of Super Oxide Dismutase in protein level might be attributed to Sulfur mustard induced- toxicytity in lung COPD. Iran J Allergy Asthma Immunol 2013;12:153–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.