158
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Dopamine-induced functional activation of Gαq mediated by dopamine D1-like receptor in rat cerebral cortical membranes

, &
Pages 9-17 | Received 25 Aug 2018, Accepted 19 Dec 2018, Published online: 21 Jun 2019

References

  • Gilman AG. G proteins: Transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649.
  • Harrison C, Traynor JR. The [35S]GTPγS binding assay: approaches and applications in pharmacology. Life Sci. 2003;74:489–508.
  • Strange PG. Use of the GTPγS ([35S]GTPγS and Eu-GTPγS) binding assay for analysis of ligand potency and efficacy at G protein-coupled receptors. Br J Pharmacol. 2010;161:1238–1249.
  • Odagaki Y, Toyoshima R. Muscarinic acetylcholine receptor-mediated activation of Gq in rat brain membranes determined by guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding using an anti-G protein scintillation proximity assay. J Neural Transm. 2012;119:525–532.
  • Odagaki Y, Toyoshima R. Activation of Gq proteins coupled with 5-HT2 receptors in rat cerebral cortical membranes assessed by antibody-capture scintillation proximity assay/[35S]GTPγS binding. Pharmacology. 2013;92:2–10.
  • Odagaki Y, Kinoshita M, Toyoshima R. Pharmacological characterization of M1 muscarinic acetylcholine receptor-mediated Gq activation in rat cerebral cortical and hippocampal membranes. Naunyn Schmiedebergs Arch Pharmacol. 2013;386:937–947.
  • Odagaki Y. Guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding/immunoprecipitation assay using magnetic beads coated with anti-Gα antibody in mammalian brain membranes, In: Odagaki Y, Borroto-Escuela DO (Eds.), Co-Immunoprecipitation Methods for Brian Tissue, Neuromethods series, vol. 144. New York: Springer Nature, p. 97–107.
  • Odagaki Y, Kinoshita M, Toyoshima R. Functional activation of Gαq via serotonin2A (5-HT2A) and muscarinic acetylcholine M1 receptors assessed byguanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding/immunoprecipitation in rat brain membranes. Eur J Pharmacol. 2014;726:109–115.
  • Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24:165–205.
  • Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.
  • Savica R, Benarroch EE. Dopamine receptor signaling in the forebrain: recent insights and clinical implications. Neurology. 2014;83:758–767.
  • Undie AS, Friedman E. Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther. 1990;253:987–992.
  • Undie AS, Weinstock J, Sarau HM, et al. E. Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem. 2008;62:2045–2048.
  • Wang H-Y, Undie AS, Friedman E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol. 1995;48:988–994.
  • Pacheco MA, Jope RS. Comparison of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis in postmortem human brain membranes and characterization of stimulation by dopamine D1 receptors. J Neurochem. 2002;69:639–644.
  • Panchalingam S, Undie AS. Optimized binding of [35S]GTPγS to Gq-like proteins stimulated with dopamine D1-like receptor agonists. Neurochem Res. 2000;25:759–767.
  • Panchalingam S, Undie AS. SKF83959 exhibits biochemical agonism by stimulating [35S]GTPγS binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology. 2001;40:826–837.
  • Jin LQ, Wang HY, Friedman E. Stimulated D(1) dopamine receptors couple to multiple Galpha proteins in different brain regions. J Neurochem. 2001;78:981–990.
  • Jin L-Q, Goswami S, Cai G, et al. SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J Neurochem. 2003;85:378–386.
  • Tang T-S, Bezprozvanny I. Dopamine receptor-mediated Ca(2+) signaling in striatal medium spiny neurons. J Biol Chem. 2004;279:42082–42094.
  • Mannoury la Cour C, Vidal S, Pasteau V, et al. Dopamine D1 receptor coupling to Gs/olf and Gq in rat striatum and cortex: a scintillation proximity assay (SPA)/antibody-capture characterization of benzazepine agonists. Neuropharmacology. 2007;52:1003–1014.
  • Kenakin T. A scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Mol Pharmacol. 2017;92:414–424.
  • Lazareno S, Birdsall NJ. Estimation of antagonist Kb from inhibition curves in functional experiments: alternatives to the Cheng-Prusoff equation. Trends Pharmacol Sci. 1993;14:237–239.
  • Wu W-L, Burnett DA, Spring R, et al. Dopamine D1/D5 receptor antagonists with improved pharmacokinetics: design, synthesis, and biological evaluation of phenol bioisosteric analogues of benzazepine D1/D5 antagonists. J Med Chem. 2005;48:680–693.
  • Bourne JA. SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001;7:399–414.
  • Huttunen M. The evolution of the serotonin-dopamine antagonist concept. J Clin Psychopharmacol. 1995;15: 4S–10S.
  • Leysen JE, Gommeren W, Van Gompel P, et al. Receptor-binding properties in vitro and in vivo of ritanserin: A very potent and long acting serotonin-S2 antagonist. Mol Pharmacol. 1985;27:600–611.
  • Brogden RN, Sorkin EM. Ketanserin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in hypertension and peripheral vascular disease. Drugs. 1990;40:903–949.
  • Schmidt CJ, Kehne JH, Carr AA. MDL 100,907: A selective 5-HT2A receptor antagonist for the treatment of schizophrenia. CNS Drug Rev. 1997;3:49–67.
  • Perreault ML, O'Dowd BF, George SR. Dopamine receptor homooligomers and heterooligomers in schizophrenia. CNS Neurosci Ther. 2011;17:52–57.
  • George SR, Kern A, Smith RG, et al. Dopamine receptor heteromeric complexes and their emerging functions. Prog Brain Res. 2014;211:183–200.
  • Perreault ML, Hasbi A, O'Dowd BF, et al. Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance. Neuropsychopharmacol. 2014;39:156–168.
  • Rashid AJ, O'Dowd BF, Verma V, et al. Neuronal Gq/11-coupled dopamine receptors: an uncharted role for dopamine. Trends Pharmacol Sci. 2007;28:551–555.
  • Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain. 2011;4:26.
  • Chun LS, Free RB, Doyle TB, et al. D1-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms. Mol Pharmacol. 2013;84:190–200.
  • Lee S-M, Yang Y, Mailman RB. Dopamine D1 receptor signaling: does GαQ-phospholipase C actually play a role? J Pharmacol Exp Ther. 2014;351:9–17.
  • Frederick AL, Yano H, Trifilieff P, et al. Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry. 2015;20:1373–1385.
  • Savasta M, Dubois A, Scatton B. Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res. 1986;375:291–301.
  • Wamsley JK, Alburges ME, McQuade RD, et al. CNS distribution of D1 receptors: use of a new specific D1 receptor antagonist, [3H]SCH39166. Neurochem Int. 1992;20 Suppl:123S–128S.
  • Werkman TR, Glennon JC, Wadman WJ, et al. Dopamine receptor pharmacology: Interactions with serotonin receptors and significance for the aetiology and treatment of schizophrenia. CNS Neurol Disord Drugs Targets. 2006;5:3–23.
  • van Wijngaarden I, Tulp MT, Soudijn W. The concept of selectivity in 5-HT receptor research. Eur J Pharmacol. 1990;188:301–312.
  • Wood MD, Wren PB. Serotonin-dopamine interactions: implications for the design of novel therapeutic agents for psychiatric disorders. Prog Brain Res. 2008;172:213–230.
  • Woodward RM, Panicker MM, Miledi R. Actions of dopamine and dopaminergic drugs on cloned serotonin receptors expressed in Xenopus oocytes. Proc Natl Acad Sci USA. 1992;89:4708–4712.
  • Bhattacharyya S, Raote I, Bhattacharya A, et al. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine. Proc Natl Acad Sci USA. 2006;103:15248–15253.
  • McQuade RD, Ford D, Duffy RA, et al. Serotonergic component of SCH 23390: in vitro and in vivo binding analyses. Life Sci. 1988;43:1861–1869.
  • Bischoff S, Heinrich M, Sonntag JM, et al. The D-1 dopamine receptor antagonist SCH 23390 also interacts potently with brain serotonin (5-HT2) receptors. Eur J Pharmacol. 1986;129:367–370.
  • Hoyer D, Waeber C, Schoeffter P, et al. 5-HT1C receptor-mediated stimulation of inositol phosphate production in pig choroid plexus. A Pharmacological Characterization. Naunyn Schmiedebergs Arch Pharmacol. 1989;33:9252–9258.
  • Taylor LA, Tedford CE, McQuade RD. The binding of SCH 39166 and SCH 23390 to 5-HT1C receptors in porcine choroid plexus. Life Sci. 1991;49:1505–1511.
  • Millan MJ, Newman-Tancredi A, Quentric Y, et al. The “selective” dopamine D1 receptor antagonist, SCH23390, is a potent and high efficacy agonist at cloned human serotonin2C receptors. Psychopharmacology (Berl). 2001;156:58–62.
  • Briggs CA, Pollock NJ, Frail DE, et al. Activation of the 5-HT1C receptor expressed in Xenopus oocytes by the benzazepines SCH 23390 and SKF 38393. Br J Pharmacol. 1991;104:1038–1044.
  • Newman-Tancredi A, Cussac D, Quentric Y, et al. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT1 and 5-HT2, receptor subtypes. J Pharmacol Exp Ther. 2002;303:815–822.
  • Görnemann T, Hübner H, Gmeiner P, et al. Characterization of the molecular fragment that is responsible for agonism of pergolide at serotonin 5-Hydroxytryptamine2B and 5-Hydroxytryptamine2A receptors. J Pharmacol Exp Ther. 2008;324:1136–1145.
  • Bhattacharyya S, Schapira AH, Mikhailidis DP, et al. Drug-induced fibrotic valvular heart disease. Lancet. 2009;374:577–585.
  • Ecker D, Unrath A, Kassubek J, et al. Dopamine agonists and their risk to induce psychotic episodes in Parkinson's disease: a case-control study. BMC Neurol. 2009;9:23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.