179
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Discover potential inhibitors for PFKFB3 using 3D-QSAR, virtual screening, molecular docking and molecular dynamics simulation

, , , , &
Pages 413-431 | Received 14 Sep 2018, Accepted 25 Dec 2018, Published online: 01 Mar 2019

References

  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
  • Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132.
  • Clme B, Telang S, Clem A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008;7:110–120.
  • Warburg O. On the origin of cancer cells. Science (New York, NY). 1956;123:295–323.
  • Rodriguez-Rodriguez P, Fernandez E, Almeida A, et al. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ. 2012;19:1582–1589.
  • Kessler R, Bleichert F, Warnke J-P, et al. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. J Neurooncol. 2008;86:257–264.
  • Atsumi T, Nishio T, Niwa H, et al. Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes. 2005;54:3349–3357.
  • Rider MH, Bertrand L, Vertommen D, et al. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 2004;381:561–579.
  • El-Maghrabi MR, Noto F, Wu N, et al. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: suiting structure to need, in a family of tissue-specific enzymes. Curr Opin Clin Nutr Metab Care. 2001;4:411–418.
  • Sakakibara R, Uemura M, Hirata T, et al. Human placental fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase: its isozymic form, expression and characterization. Biosci Biotechnol Biochem. 1997;61:1949–1952.
  • Calvo MN, Bartrons R, Castaño E, et al. PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett. 2006;580:3308.
  • Obach M, Caro J, Kong X, et al. 6-phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem. 2004;279:53562.
  • Zhu W, Ye L, Zhang J, et al. PFK15, a small molecule inhibitor of PFKFB3, induces cell cycle arrest, apoptosis and inhibits invasion in gastric cancer. PLoS One. 2016;11:e0163768.
  • Schaftingen EV, Jett MF, Hue L, et al. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci USA. 1981;78:3483–3486.
  • Van SE, Hue L, Hers HG. Study of the fructose 6-phosphate/fructose 1,6-bi-phosphate cycle in the liver in vivo. Biochem J. 1980;192:263–271.
  • Van SE, Hue L, Hers HG. Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J. 1980;192:897–901.
  • Bazan JF, Fletterick RJ, Pilkis SJ. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci USA. 1989;86:9642–9646.
  • Pilkis SJ, Regen DM, Stewart HB, et al. Evidence for two catalytic sites on 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Dynamics of substrate exchange and phosphoryl enzyme formation. J Biol Chem. 1984;259:949–958.
  • Yalcin A, Clem BF, Simmons A, et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009;284:24223.
  • Clem BF, Tapolsky G, Clem AL, et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013;12:1461–1470.
  • Chand P, Tapolsky GH. Preparation of pyridynyltrifluoromethylquinolinylpropenone derivatives for use as a PFKFB3 inhibitors: 2013148228. 2013;10–03.
  • Yunlei H, Juanjuan X, Yanfang Z, et al. Research progress of 6-phosphofructo-2-kinase 3 inhibitors. Chinese J Med Chem. 2016;(1):65–70.
  • Brooke DG, Khoury A, Dziadek MA, et al. Targeting the Warburg Effect in cancer; relationships for 2-arylpyridazinones as inhibitors of the key glycolytic enzyme 6-phosphofructo-2-kinase/2,6-bisphosphatase 3 (PFKFB3). Bioorg Med Chem. 2014;22:1029–1039.
  • Boyd S, Brookfield JL, Critchlow SE, et al. Structure-based design of potent and selective inhibitors of the metabolic kinase PFKFB3. J Med Chem. 2015;58:3611–3625.
  • Seo M, Kim JD, Lee YH, et al. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg Effect. PLoS One. 2011;6:e24179.
  • Färnegårdh K, Shoshan M, Ährlundrichter L. Targeting of PFKFB3; 2014.
  • Glide, version 6.7; New York, NY: Schrödinger, LLC; 2015.
  • Masetro, version 10.2; New York, NY: Schrödinger, LLC; 2015.
  • Li H, Sutter J, Hoffmann R, et al. Pharmacophore perception and development and use in drug design. La Jolla Calif, USA: International University Line. 2000.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv Drug Deliv Rev. 2012;64:4–17.
  • Kerrigan JE. GROMACS introductory tutorial. Biochemistry. 1993;32:13123.
  • Berendsen HJ, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56.
  • Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–317.
  • Lu S, Jiang Y, Lv J, et al. Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions. J Mol Graph Model. 2010;28:766–774.
  • Kumari R, Kumar R, Lynn A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54:1951–1962.
  • Tan JJ, Chen WZ, Wang CX. Investigating interactions between HIV-1 gp41 and inhibitors by molecular dynamics simulation and MM–PBSA/GBSA calculations. J Mol Struc-Theochem. 2006;766:77–82.
  • Hou T, Wang J, Li Y, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51:69–82.
  • Kumar A, Srivastava G, Negi AS, et al. Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β. J Biomol Struct Dyn. 2018;1–37.
  • Bavi R, Kumar R, Choi L, et al. Exploration of novel inhibitors for Bruton’s tyrosine kinase by 3D QSAR modeling and molecular dynamics simulation. PLoS One. 2016;11(1):e0147190.
  • Liao KH, Chen KB, Lee WY, et al. Ligand-based and structure-based investigation for Alzheimer's disease from traditional chinese medicine. Evid-Based Compl Alt. 2014;2014:364819.
  • Anbarasu K, Jayanthi S. Identification of curcumin derivatives as human LMTK3 inhibitors for breast cancer: a docking, dynamics, and MM/PBSA approach. 3 Biotech. 2018;8:228.
  • Chaudhary N, Aparoy P. Deciphering the mechanism behind the varied binding activities of COXIBs through molecular dynamic simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies. J Biomol Struct Dyn. 2016;35–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.