324
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis

, , , , &
Pages 388-394 | Received 27 Nov 2019, Accepted 02 Mar 2020, Published online: 13 Mar 2020

References

  • Riley CM, Sciurba FC. Diagnosis and outpatient management of chronic obstructive pulmonary disease: a review. JAMA. 2019;321(8):786–797.
  • Hattab Y, Alhassan S, Balaan M, et al. Chronic obstructive pulmonary disease. Critic Care Nurs Quart. 2016;39(2):124–130.
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27.
  • Reilly SM, Goel R, Trushin N, et al. Brand variation in oxidant production in mainstream cigarette smoke: carbonyls and free radicals. Food Chem Toxicol. 2017;106(Pt A):147–154.
  • Oliveira da Silva C, Monte-Alto-Costa A, Renovato-Martins M, et al. Time course of the phenotype of blood and bone marrow monocytes and macrophages in the lung after cigarette smoke exposure in vivo. Int J Mol Sci. 2017;18(9):1940.
  • Eapen MS, Myers S, Walters EH, et al. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Exp Rev Resp Med. 2017;11(10):827–839.
  • Li C, Schluesener H. Health-promoting effects of the citrus flavanone hesperidin. Crit Rev Food Sci Nutr. 2017;57(3):613–631.
  • Hajialyani M, Hosein Farzaei M, Echeverria J, et al. Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules. 2019;24(3):648.
  • Tejada S, Pinya S, Martorell M, et al. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem. 2019;25(37):4929–4945.
  • Pu P. Protection mechanisms of hesperidin on mouse with insulin resistance. Zhongguo Zhong Yao Zhi = Zhongguo Zhongyao Zazhi [Chin J Chin Mater Med]. 2016;41(17):3290–3295.
  • Roohbakhsh A, Parhiz H, Soltani F, et al. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015;124:64–74.
  • Adefegha SA, Rosa Leal DB, Olabiyi AA, et al. Hesperidin attenuates inflammation and oxidative damage in pleural exudates and liver of rat model of pleurisy. Redox Rep. 2017;22(6):563–571.
  • Liu WY, Liou SS, Hong TY, et al. Protective effects of hesperidin (citrus flavonone) on high glucose induced oxidative stress and apoptosis in a cellular model for diabetic retinopathy. Nutrients. 2017;9(12): pii: E1312.
  • Gellner CA, Reynaga DD, Leslie FM. Cigarette smoke extract: a preclinical model of tobacco dependence. Curr Protocol Neurosci. 2016;77(1):9.54.1–9.54.10.
  • Tashkin DP. Smoking cessation in chronic obstructive pulmonary disease. Semin Respir Crit Care Med. 2015;36(4):491–507.
  • Hu N, Green SA. Acetyl radical generation in cigarette smoke: quantification and simulations. Atmos Environ. 2014;95:142–150.
  • Murray LA, Dunmore R, Camelo A, et al. Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respir Res. 2017;18(1):82.
  • Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chronic Obstruct Pulmon Dis. 2016;11:1391–1401.
  • Kennedy-Feitosa E, Okuro RT, Pinho Ribeiro V, et al. Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm Pharmacol Ther. 2016;41:11–18.
  • Singh S, Verma SK, Kumar S, et al. Evaluation of oxidative stress and antioxidant status in chronic obstructive pulmonary disease. Scand J Immunol. 2017;85(2):130–137.
  • Liu J, Pang Z, Wang G, et al. Advanced role of neutrophils in common respiratory diseases. J Immunol Res. 2017;2017:1–21.
  • Zhu A, Ge D, Zhang J, et al. Sputum myeloperoxidase in chronic obstructive pulmonary disease. Eur J Med Res. 2014;19(1):12.
  • Chunhua M, Long H, Zhu W, et al. Betulin inhibited cigarette smoke-induced COPD in mice. Biomed Pharmacother. 2017;85:679–686.
  • Meng C, Guo Z, Li D, et al. Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPARgamma and Bcl2 in model mice. Mol Med Report. 2018;17(1):1261–1268.
  • Li M, Guo Z, Shao H, et al. Therapeutic effect of hesperidin on severe acute pancreatitis in rats and its mechanism. Zhonghua Wei Zhong Bing Jiu Xue. 2017;29(10):921–925.
  • Iskender H, Dokumacioglu E, Sen TM, et al. The effect of hesperidin and quercetin on oxidative stress, NF-kappaB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed Pharmacother. 2017;90:500–508.
  • Sun X, Dong Z, Li N, et al. Nucleosides isolated from Ophiocordyceps sinensis inhibit cigarette smoke extract-induced inflammation via the SIRT1-nuclear factor-kappaB/p65 pathway in RAW264.7 macrophages and in COPD mice. Int J Chron Obstruct Pulmon Dis. 2018;13:2821–2832.
  • Iacovelli J, Rowe GC, Khadka A, et al. PGC-1alpha induces human RPE oxidative metabolism and antioxidant capacity. Invest Ophthalmol Vis Sci. 2016;57(3):1038–1051.
  • Zhang W, Huang Q, Zeng Z, et al. Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxid Med Cell Longevity. 2017;2017:1–8.
  • Kauppinen A, Suuronen T, Ojala J, et al. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013;25(10):1939–1948.
  • Tang BL. Sirt1 and the mitochondria. Mol Cells. 2016;39(2):87–95.
  • Min JJ, Huo XL, Xiang LY, et al. Protective effect of Dl-3n-butylphthalide on learning and memory impairment induced by chronic intermittent hypoxia-hypercapnia exposure. Sci Rep. 2015;4(1):5555.
  • Wu H, Liu Y, Chen X, et al. Neohesperidin exerts lipid-regulating effects in vitro and in vivo via fibroblast growth factor 21 and AMP-activated protein kinase/sirtuin type 1/peroxisome proliferator-activated receptor gamma coactivator 1alpha signaling axis. Pharmacology. 2017;100(3–4):115–126.
  • Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Borghi SM, et al. Hesperidin methylchalcone suppresses experimental gout arthritis in mice by inhibiting NF-kappaB activation. J Agric Food Chem. 2018;66(25):6269–6280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.