284
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Crosstalk between kisspeptin and gonadotropin-inhibitory hormone in the silence of puberty: preclinical evidence from a calcium signaling study

, , , , , , & ORCID Icon show all
Pages 608-613 | Received 03 Aug 2022, Accepted 11 Sep 2022, Published online: 22 Sep 2022

References

  • Palmert MR, Boepple PA. Variation in the timing of puberty: clinical spectrum and genetic investigation. J Clin Endocrinol Metab. 2001;86(6):2364–2368.
  • Leka-Emiri S, Chrousos GP, Kanaka-Gantenbein C. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP). J Endocrinol Invest. 2017;40(8):789–802.
  • Kanasaki H, Tselmeg M, Oride A, et al. Pulsatile kisspeptin effectively stimulates gonadotropin-releasing hormone (GnRH)-producing neurons. Gynecol Endocrinol. 2017;33(9):721–727.
  • de Roux N, Genin E, Carel JC, et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA. 2003;100(19):10972–10976.
  • Funes S, Hedrick JA, Vassileva G, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun. 2003;312(4):1357–631363.
  • Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–1627.
  • Tsutsui K, Saigoh E, Ukena K, et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun. 2000;275(2):661–667.
  • Kriegsfeld LJ, Mei DF, Bentley GE, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA. 2006;103(7):2410–2415.
  • Tsutsui K, Ubuka T. GnIH control of feeding and reproductive behaviors. Front Endocrinol. 2016;7:170.
  • Kelestimur H, Kacar E, Uzun E, et al. Arg-Phe-amide-related peptides influence gonadotropin-releasing hormone neurons. Neural Regen Res. 2013;8(18):1714–1720.
  • Pinilla L, Aguilar E, Dieguez C, et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012;92(3):1235–1316.
  • Wu M, Dumalska I, Morozova E, et al. Gonadotropin inhibitory hormone inhibits basal forebrain vGluT2-gonadotropin-releasing hormone neurons via a direct postsynaptic mechanism. J Physiol. 2009;587(Pt 7):1401–1411.
  • Sahin Z, Canpolat S, Ozcan M, et al. Kisspeptin antagonist prevents RF9-induced reproductive changes in female rats. Reproduction. 2015;149(5):465–473.
  • Sahin Z, Solak H, Koc A, et al. Long-term metabolic cage housing increases anxiety/depression-related behaviours in adult male rats. Arch Physiol Biochem. 2019;125(2):122–127.
  • Belchetz PE, Plant TM, Nakai Y, et al. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science. 1978;202(4368):631–633.
  • Seminara SB. Mechanisms of disease: the first kiss-a crucial role for kisspeptin-1 and its receptor, G-protein-coupled receptor 54, in puberty and reproduction. Nat Clin Pract Endocrinol Metab. 2006;2(6):328–334.
  • Ramaswamy S, Seminara SB, Pohl CR, et al. Effect of continuous intravenous administration of human metastin 45-54 on the neuroendocrine activity of the hypothalamic-pituitary-testicular axis in the adult male rhesus monkey (Macaca mulatta). Endocrinology. 2007;148(7):3364–3370.
  • Beale KE, Kinsey-Jones JS, Gardiner JV, et al. The physiological role of arcuate kisspeptin neurons in the control of reproductive function in female rats. Endocrinology. 2014;155(3):1091–1098.
  • Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21.
  • Kroll H, Bolsover S, Hsu J, et al. Kisspeptin-evoked calcium signals in isolated primary rat gonadotropin-releasing hormone neurones. Neuroendocrinology. 2011;93(2):114–120.
  • Ozcan M, Alcin E, Ayar A, et al. Kisspeptin-10 elicits triphasic cytosolic calcium responses in immortalized GT1-7 GnRH neurones. Neurosci Lett. 2011;492(1):55–58.
  • Serhatlioglu I, Yuksel H, Kacar E, et al. Kisspeptin increases intracellular calcium concentration by protein kinase C-mediated signaling in the primary cultured neurons from rat hippocampus. Cell Mol Biol. 2018;64(7):56–59.
  • Kelestimur H, Bulut F, Canpolat S, et al. Kisspeptin leads to calcium signaling in cultured rat dorsal root ganglion neurons. Gen Physiol Biophys. 2021;40(2):155–160.
  • Constantin S, Caligioni CS, Stojilkovic S, et al. Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology. 2009;150(3):1400–1412.
  • Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. 2006;147(12):5817–5825.
  • Smith JT, Dungan HM, Stoll EA, et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 2005;146(7):2976–2984.
  • Navarro VM, Fernández-Fernández R, Castellano JM, et al. Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol. 2004;561(Pt 2):379–386.
  • Thompson IR, Kaiser UB. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol Cell Endocrinol. 2014;385(1–2):28–35.
  • George JT, Veldhuis JD, Roseweir AK, et al. Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. J Clin Endocrinol Metab. 2011;96(8):E1228–E1236.
  • Clarke IJ, Li Q, Henry BA, et al. Continuous kisspeptin restores luteinizing hormone pulsatility Following cessation by a neurokinin B antagonist in female sheep. Endocrinology. 2018;159(2):639–646.
  • Hernández-Hernández JM, Martin GB, Becerril-Pérez CM, et al. Kisspeptin stimulates the pulsatile secretion of luteinizing hormone (LH) during postpartum anestrus in ewes undergoing continuous and restricted suckling. Animals. 2021;11(9):2656.
  • Kim D, Jang S, Kim J, et al. Kisspeptin Neuron-Specific and Self-Sustained calcium oscillation in the hypothalamic arcuate nucleus of neonatal mice: regulatory factors of its synchronization. Neuroendocrinology. 2020;110(11–12):1010–1027.
  • Cheng L, Yang S, Si L, et al. Direct effect of RFRP-3 microinjection into the lateral ventricle on the hypothalamic kisspeptin neurons in ovariectomized estrogen-primed rats. Exp Ther Med. 2022;23(1):24.
  • Tsutsui K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): biosynthesis, mode of action and functional significance. Prog Neurobiol. 2009;88(1):76–88.
  • Tsutsui K, Bentley GE, Bedecarrats G, et al. Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front Neuroendocrinol. 2010;31(3):284–295.
  • Son YL, Ubuka T, Millar RP, et al. Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology. 2012;153(5):2332–2343.
  • Gojska NM, Friedman Z, Belsham DD. Direct regulation of gonadotrophin-releasing hormone (GnRH) transcription by RF-amide-related peptide-3 and kisspeptin in a novel GnRH-secreting cell line, mHypoA-GnRH/GFP. J Neuroendocrinol. 2014;26(12):888–897.
  • Sari IP, Rao A, Smith JT, et al. Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology. 2009;150(12):5549–5556.
  • Clarke IJ, Sari IP, Qi Y, et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology. 2008;149(11):5811–5821.
  • Tsutsui K, Ubuka T. Discovery of gonadotropin-inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol Cell Endocrinol. 2020;514:110914.
  • Ubuka T, Inoue K, Fukuda Y, et al. Identification, expression, and physiological functions of siberian hamster gonadotropin-inhibitory hormone. Endocrinology. 2012;153(1):373–385.
  • Gingerich S, Wang X, Lee PK, et al. The generation of an array of clonal, immortalized cell models from the rat hypothalamus: analysis of melatonin effects on kisspeptin and gonadotropin-inhibitory hormone neurons. Neuroscience. 2009;162(4):1134–1140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.