229
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of ladder parameters on asymmetric patterns of force exertion during below-knee amputees climbing ladders

, , &

References

  • Arango JC, Ketchum JM, Hurley J. Allegation of ethnic minorities from 1993–2008: an equal employment opportunity commission (EEOC) study. Work. 2014;47(2):42–51.
  • Powers C, Rao S, Perry J. Knee kinetics in transtibial amputee gait. Gait Posture. 1998;8(2):1–7. doi: 10.1016/S0966-6362(98)00016-2.
  • Nolan L, Wit A, Dudzinski K, et al. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17:142–151. doi:10.1016/S0966-6362(02)00066-8.
  • Schmaltz T, Blumentritt S, Marx B. Biomechanical analysis of stair ambulation in lower limb amputees. Gait Posture. 2007;25:267–278. doi:10.1016/j.gaitpost.2006.04.008.
  • Kent J, Pranklynr A. Biomechanical models in the study of lower limb amputee kinematics: a review. Prosthet Orthot Int. 2011;35(2):124–139. doi:10.1177/0309364611407677.
  • Gates DH, Dingwell JB, Scott SJ. Gait characteristics of individuals with transtibial amputations walking on a destabilizing rock surface. Gait Posture. 2012;36(1):33–39. doi:10.1016/j.gaitpost.2011.12.019.
  • Devan H, Carman A, Hendrick P. Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: systematic review. J Rehabil Res Dev. 2015;52(1):45–51. doi:10.1682/JRRD.2014.05.0135.
  • Winter D, Sienko S. Biomechanics of below-knee amputee gait. J Biomech. 1988;21(5):361–367. doi: 10.1016/0021-9290(88)90142-X.
  • Riener R, Rabuffetti M, Pfigo C. Stair ascent and descent at different inclinations. Gait Posture. 2002;15(1):32–44. doi:10.1016/S0966-6362(01)00162-X.
  • Sinitski EH, Hansen AH, Wilken JM. Biomechanics of the ankle–foot system during stair ambulation: implications for design of advanced ankle–foot prostheses. J Biomech. 2012;45(3):588–594. doi: 10.1016/j.jbiomech.2011.11.007.
  • Evans BM 3rd, Mueller JKP, Pusch M, et al. Mobile gait analysis system for lower limb amputee high-level activity rehabilitation. U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012. 2012. Available from: http://www.dtic.mil/dtic/tr/fulltext/u2/a567834.pdf.
  • Silverman AK, Neptune RR, Sinitski EH. Whole-body angular momentum during stair ascent and descent. Gait Posture. 2014;39(4):1109–1114. doi: 10.1016/j.gaitpost.2014.01.025
  • Liu MQ, Anderson FC, Pandy MG, et al. Muscles that support the body also modulate forward progression during walking. J Biomech. 2006;39:2623–2630. doi: 10.1016/j.jbiomech.2005.08.017.
  • Neptune RR, Zajac FE, Kautz SA. Muscle force redistributes segmental power for body progression during walking. Gait Posture. 2004;19:194–205. doi: 10.1016/S0966-6362(03)00062-6.
  • Dewar ME. Body movements in climbing a ladder. Ergonomics. 1977;20(1):67–86. doi: 10.1080/00140137708931602.
  • Lee YH, Cheng CK, Tsuang YH. Biomechanical analysis of ladder climbing: the effect of slant angle and climbing speed. Proc Natl Sci Counc Repub China B. 1994;18(4):170–178.
  • Simeonov P, Hsiao H, Kim IJ, et al. Factors affecting extension ladder angular positioning. Hum Factors. 2012;54(3):334–345. doi:10.1177/0018720812445805.
  • Campbell A, Pagano C. The effect of instructions on potential slide-out failures during portable extension ladder angular positioning. Accid Anal Prev. 2014;67:30–39. doi:10.1016/j.aap.2014.01.025.
  • McIntyre DR, Smith MA, Jackson AW. The effects of shoe type on the stability and propulsive efforts of the lower limbs during ladder ascents. Hum Mov Sci. 1983;2(1):57–65. doi:10.1016/0167-9457(83)90006-4.
  • Pliner EM, Campbell NH, Beschorner KE. Effects of foot placement, hand positioning, age and climbing biodynamics on ladder slip outcomes. Ergonomics. 2014;57(11):1739–49. doi:10.1080/00140139.2014.943681.
  • Hammer W, Schmalz U. Human behavior when climbing ladders with varying inclinations. Saf Sci. 1992;15:21–38. doi:10.1016/0925-7535(92)90037-Z.
  • Hoozemans JM. Workload of window cleaners using ladders differing in rung separation. Appl Ergon. 2005;36:275–282. doi:10.1016/j.apergo.2005.01.013.
  • Armstrong TJ, Young J, Woolley C, et al. Biomechanical aspects of fixed ladder climbing: style, ladder tilt and carrying. Proc Hum Factors and Ergon Soc Annu Meet. 2009;53(14):935–939. doi:10.1177/154193120905301417.
  • Schnorenberg AJ, Campbell-Kyureghyan NH, Beschorner KE. Biomechanical response to ladder slipping events: effects of hand placement. J Biomech. 2015;48(14):3810–3815. doi:10.1016/j.jbiomech.2015.09.001.
  • The national standard of the People’s Republic of China (GBT). Ladders – part 1: terms, types, functional sizes. Beijing: GBT; 1999. Chinese.
  • Young JG, Woolley C, Armstrong TJ, et al. Hand-handhold coupling: effect of handle shape, orientation, and friction on breakaway strength. Hum Factors. 2009;51(5):705–717. doi:10.1177/0018720809355969.
  • Bloswick DS, Chaffin DB. An ergonomic analysis of the ladder climbing activity. Int J Ind Ergonom. 1990;6:17–27. doi:10.1016/0169-8141(90)90047-6.
  • Seo NJ, Armstrong TJ. Effect of elliptic handle shape on grasping strategies, grip force distribution, and twisting ability. Ergonomics. 2011;54(10):961–970. doi: 10.1080/00140139.2011.606923.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.